K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2020

\(P=\frac{\left(a-b\right)^2\left(6a^2b^2+3a^3b+3ab^3+4\right)}{4ab}+\frac{17}{4}\ge\frac{17}{4}\)

Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)

16 tháng 3 2020

bạn làm khó hiểu quá .

21 tháng 3 2020

Mk không biết tải hình lên, xin lỗi bn nhé.

a) Do AB là đường kính của (O) nên

\(\Rightarrow\widehat{ACB}=\widehat{ADB}=90^0\)

Xét tứ giác CEDF có : \(\widehat{ECF}+\widehat{EDF}=180^0\)

\(\Rightarrow ECDF\)là tứ giác nội tiếp (ĐPCM)

b) Do \(\widehat{ECF}=\widehat{EDF}=90^0\)nên ECDF nội tiếp đường tròn đường kính EF

Hay ECDF nội tiếp (I;IE) nên

\(\widehat{IDF}=\widehat{IFD}=\widehat{ECD}=\frac{1}{2}sđ\widebat{BD}=\widehat{OAD}=\widehat{ODA}\)

Từ đó ta có: \(\widehat{IDO}=\widehat{IDE}+\widehat{OAD}=\widehat{IDE}+\widehat{IDF}=90^0\)

\(\Rightarrow\)ID là tiếp tuyến của đường tròn (O) (ĐPCM)

21 tháng 3 2020

Ta có

\(A=\frac{x^2+2x-1}{x^2-2x+3}\left(ĐKXĐ:\forall x\inℝ\right)\)

\(\Leftrightarrow A.\left(x^2-2x+3\right)=x^2+2x-1\)

\(\Leftrightarrow\left(A-1\right).x^2-2\left(A+1\right)x+3A+1=0\left(1\right)\)

Do \(\forall x\inℝ\)ta luôn có một giá trị A tương ứng nên phương trình (1) luôn có nghiệm

\(\Rightarrow\Delta^'_x\ge0\)

\(\Leftrightarrow\left(A+1\right)^2-\left(3A+1\right)\left(A-1\right)\ge0\)

\(\Leftrightarrow-2A^2+4A+2\ge0\)

\(\Leftrightarrow1-\sqrt{2}\le A\le1+\sqrt{2}\)

Nếu \(A=1-\sqrt{2}\)thì thay vào trên ta được \(x=1-\sqrt{2}\)

Nếu \(A=1+\sqrt{2}\)thì thay vào trên ta được 

Vậy \(\hept{\begin{cases}MinA=1-\sqrt{2}\Leftrightarrow x=1-\sqrt{2}\\MaxA=1+\sqrt{2}\Leftrightarrow x=1+\sqrt{2}\end{cases}}\)

19 tháng 3 2020

Ta có : m=0 thay vào (d) được :

y = f(x) = (2*0-1)x+1 = -x+1

Vì hệ số a = -1<0 nên hàm nghịch biến

Mà √3 -√2 > √6 - √5 =>f(√3 -√2) < f(√6 - √5)

16 tháng 3 2020

Với m = 0,  thì f(√3 -√2) < f(√6 - √5)

17 tháng 3 2020

Không phải thế :

Để phương trình có 2 nghiệm lớn hơn 2 

<=> \(x_1>2;x_2>2\)

<=> \(\hept{\begin{cases}x_1+x_2>4\\\left(x_1-2\right)\left(x_2-2\right)>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x_1+x_2>4\\x_1.x_2-2\left(x_1+x_2\right)+4>0\end{cases}}\)

hay \(\hept{\begin{cases}2m>4\\2m-3-2.2m+4>0\end{cases}}\)<=> \(\hept{\begin{cases}m>2\\1-2m>0\end{cases}}\)vô lí 

=> không tồn tại m 

Tuy nhiên đề này thì phương trình không có nghiệm đâu nhé. 

Tính đenta rõ ràng <0 

19 tháng 3 2020

Cj ơi bài này em có giải r. Cách của em khác biểu điểm nhưng kq vẫn đúng. Thanks cj nhiều