Make questions to the underlines works:
We went to school by bus.
->__________________________.
Complete the sentences:
Where does he live?
-> What______________________.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1.
a) -2x( -3x + 2 ) - ( x + 2 )2
= 6x2 - 4x - ( x2 + 4x + 4 )
= 6x2 - 4x - x2 - 4x - 4
= 5x2 - 8x - 4
b) ( x + 2 )( x2 - 2x + 4 ) - 2( x + 1 )( 1 - x )
= x3 + 8 + 2( x + 1 )( x - 1 )
= x3 + 8 + 2( x2 - 1 )
= x3 + 8 + 2x2 - 2
= x3 + 2x2 + 6
c) ( 2x - 1 )2 - 2( 4x2 - 1 ) + ( 2x + 1 )2
= 4x2 - 4x + 1 - 8x2 + 2 + 4x2 + 4x + 1
= 4
d) x2 - 3x + xy - 3y
= x( x - 3 ) + y( x - 3 )
= ( x - 3 )( x + y )
Bài 2.
a) 4x2 - 4xy + y2 = ( 2x - y )2
b) 9x3 - 9x2y - 4x + 4y
= 9x2( x - y ) - 4( x - y )
= ( x - y )( 9x2 - 4 )
= ( x - y )( 3x - 2 )( 3x + 2 )
c) x3 + 2 + 3( x3 - 2 )
= x3 + 2 + 3x3 - 6
= 4x3 - 4
= 4( x3 - 1 )
= 4( x - 1 )( x2 + x + 1 )
Bài 3.
2( x - 2 ) = x2 - 4x + 4
⇔ ( x - 2 )2 - 2( x - 2 ) = 0
⇔ ( x - 2 )( x - 2 - 2 ) = 0
⇔ ( x - 2 )( x - 4 ) = 0
⇔ x = 2 hoặc x = 4
Muốn rút gọn một phân thức đại số ta phải:
- Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung
- Chia cả tử và mẫu cho nhân tử chung giống nhau
1) \(x^2+x-2=0\)
\(\Leftrightarrow x^2+2x-x-2=0\)
\(\Leftrightarrow x\left(x+2\right)-\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)
2) \(x^2+2x-3=0\)
\(\Leftrightarrow x^2+3x-x-3=0\)
\(\Leftrightarrow x\left(x+3\right)-\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x=1\end{cases}}\)
3) \(x^2-x-6=0\)
\(\Leftrightarrow x^2-3x+2x-6=0\)
\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
4) \(x^2+x-6=0\)
\(\Leftrightarrow x^2+3x-2x-6=0\)
\(\Leftrightarrow x\left(x+3\right)-2\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)
5) \(2x^2-x-6=0\)
\(\Leftrightarrow2x^2-4x+3x-6=0\)
\(\Leftrightarrow2x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{3}{2}\end{cases}}\)
\(x^2+5x+6\)
\(=x^2+2x+3x+6\)
\(=x\left(x+2\right)+3\left(x+2\right)\)
\(=\left(x+2\right)\left(x+3\right)\)
Bài này bạn dùng phương pháp tách số nhé.
Đề:.......
<=> x2 + 6x - x + 6
<=> (x2 + 6x) - (x + 6)
<=> x(x + 6) - (x + 6)
<=> (x + 6)(x - 1)
\(\left(x+1\right)\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(x+1\right)^3=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy \(x=-1\)
\(\left(x+1\right)\left(x+1\right)^2=0\)
\(\left(x+1\right)\left(x+1+1\right)=0\)
\(\left(x+1\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}}\)
2x( 3 - x ) + 5x - 15
= 2x( 3 - x ) - ( 15 - 5x )
= 2x( 3 - x ) - 5( 3 - x )
= ( 3 - x )( 2x - 5 )
Đề:.......
<=> 6x - 2x2 + 5x - 15
<=> 2x(3 - x) + 5(x - 3)
<=> 2x(3 - x) - 5(3 - x)
<=> (3 - x)(2x - 5)
a) ( 2x - 1 )( 2x + 1 ) - 4( x2 + x ) = 16
⇔ 4x2 - 1 - 4x2 - 4x = 16
⇔ -4x - 1 = 16
⇔ -4x = 17
⇔ x = -17/4
b) 5x( x - 2013 ) - x + 2013 = 0
⇔ 5x( x - 2013 ) - ( x - 2013 ) = 0
⇔ ( x - 2013 )( 5x - 1 ) = 0
⇔ \(\orbr{\begin{cases}x-2013=0\\5x-1=0\end{cases}}\)
⇔ \(\orbr{\begin{cases}x=2013\\x=\frac{1}{5}\end{cases}}\)
a) \(\left(2x-1\right)\left(2x+1\right)-4.\left(x^2+x\right)=16\)
\(4x^2-1-4x^2-4x=16\)
\(-1-4x=16\)
\(-4x=17\)
\(x=-\frac{17}{4}\)
b) \(5x\left(x-2013\right)-x+2013=0\)
\(\left(x-2013\right)\left(5x-1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-2013=0\\5x-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=2013\\x=\frac{1}{5}\end{cases}}}\)
Gọi K là giao điểm của AD và BC => K là trung điểm AD (vì D đối xứng với A qua BC)
lại có O là trung điểm AE (vì E đối xứng với A qua O)
=> KO là đường trung bình của tam giác ADE => KO // DE hay BC // DE => BCED là hình thang (1)
ta có O là trung điểm AE (cmt) và O cũng là trung điểm BC (giả thiết)
=> ABEC là hình bình hành => AB // CE => \(\widehat{ABC}=\widehat{BCE}\)(so le trong)
lại có \(\widehat{ABC}=\widehat{DBC}\)(do D đói xứng với A qua BC)
=> \(\widehat{DBC}=\widehat{BCE}\)(2)
từ (1) và (2) => BCED là hình thang cân.
Make questions to the underlines works:
We went to school by bus.
--> Are they going to school by car?
Where does he live?
-> What!You don't know where I live!
Câu cuối chế
1.how did we go to school