Tìm x,y thuộc z biết x2-y2+2y-22=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề như này vẫn đúng nhé?
\(\frac{1}{98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{98}-\left(\frac{1}{98.97}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
\(=\frac{1}{98}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}\right)\)
\(=\frac{1}{98}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}\right)\)
\(=\frac{1}{98}-\left(1-\frac{1}{98}\right)\)
\(=\left(\frac{1}{98}+\frac{1}{98}\right)-1\)
\(=\frac{-48}{49}\)
Ta có :
\(A=\frac{1}{3}-\frac{3}{4}-\left(-\frac{3}{5}\right)+\frac{1}{72}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)
\(\Rightarrow A=\frac{5}{15}-\frac{54}{72}+\frac{9}{15}+\frac{1}{72}-\frac{16}{72}-\frac{1}{72}+\frac{1}{15}\)
\(\Rightarrow A=\left(\frac{5}{15}+\frac{9}{15}+\frac{1}{15}\right)+\left(-\frac{54}{72}+\frac{1}{72}-\frac{16}{72}-\frac{2}{72}\right)\)
\(\Rightarrow A=1-\frac{71}{72}=\frac{1}{72}\)
\(\left|x+\frac{1}{4}\right|-\frac{3}{4}=5\)
\(\Leftrightarrow\left|x+\frac{1}{4}\right|=5+\frac{3}{4}\)
\(\Leftrightarrow\left|x+\frac{1}{4}\right|=\frac{23}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{4}=\frac{23}{4}\\x+\frac{1}{4}=-\frac{23}{4}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{22}{4}\\x=-6\end{cases}}\)
Vậy \(x\in\left\{\frac{22}{4};-6\right\}\)
\(|x+\frac{1}{4}|-\frac{3}{4}=5\)
\(|x+\frac{1}{4}|=5+\frac{3}{4}\)
\(|x+\frac{1}{4}|=\frac{23}{4}\)
\(TH1:x+\frac{1}{4}=\frac{23}{4}\) \(TH2:x+\frac{1}{4}=\frac{-23}{4}\)
\(x=\frac{23}{4}-\frac{1}{4}\) \(x=\frac{-23}{4}-\frac{1}{4}\)
\(x=\frac{22}{4}\) \(x=\frac{-24}{4}\)
Vậy \(x=\frac{22}{4};x=\frac{-24}{4}\)
\(D=-\left|x-\frac{3}{7}\right|-\frac{1}{4}\)
Vì \(\left|x-\frac{3}{7}\right|\ge0\forall x\)
\(\Leftrightarrow-\left|x-\frac{3}{7}\right|\le0\forall x\)
\(\Leftrightarrow-\left|x-\frac{3}{7}\right|-\frac{1}{4}\le-\frac{1}{4}\forall x\)
Dấu " = " xảy ra khi và chỉ khi :
\(\left|x-\frac{3}{7}\right|=0\Leftrightarrow x-\frac{3}{7}=0\Leftrightarrow x=\frac{3}{7}\)
Vậy \(D_{max}=-\frac{1}{4}\)khi \(x=\frac{3}{7}\).
x2 - y2 + 2y - 22 = 0
<=> x2 - y2 + y + y - 1 = 21
<=> x2 - y(y - 1) + (y - 1) = 21
<=> x2 - (y + 1)(y - 1) = 21
<=> x2 - (y - 1)2 = 21
=> x2 - x(y - 1) + x(y - 1) - (y - 1)2 = 21
<=> x(x - y + 1) + (y - 1)(x - y + 1) = 21
<=> (x + y - 1)(x - y + 1) = 21
Lập bảng xét các trường hợp