K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2020

ĐK: \(5-x^2>0\)

\(\frac{x^3}{\sqrt{5-x^2}}-8\left(5-x^2\right)=0\)

Đặt: \(\sqrt{5-x^2}=t>0\)

ta có: \(x^3-8t^3=0\)

<=> \(\left(x-2t\right)\left(x^2+2xt+4t^2\right)=0\)

<=> x - 2t = 0  ( vì x^2 + 2xt + 4t^2 =( x+ t) ^2 + 3t^2 >0)

<=> x = 2t 

Ta có: \(x=2\sqrt{5-x^2}\)

<=> \(\hept{\begin{cases}x\ge0\\5x^2=20\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge0\\x=\pm2\end{cases}}\Leftrightarrow x=2\)( thỏa mãn đk xđ)

vậy S = { 2 }

18 tháng 3 2020

\(B=\frac{\sqrt{x}\left(\sqrt{x}-1+\frac{1}{\sqrt{x}}\right)}{\sqrt{x}}=\sqrt{x}-1+\frac{1}{\sqrt{x}}=3+\frac{1}{\sqrt{x}}\Rightarrow\sqrt{x}=4\Leftrightarrow x=16\)

Vậy x=16 thì: \(\frac{x-\sqrt{x}+1}{\sqrt{x}}=3+\frac{1}{\sqrt{x}}\)

17 tháng 3 2020

+) điều kiện \(-1\le x\le1\)

+) đặt \(\hept{\begin{cases}a=\sqrt{1-x};a\ge0\\b=\sqrt{1+x};b\ge0\end{cases}=>3-x=2a^2+b^2}\)

+) phương trình trở thành

\(2a-b+3ab=2a^2+b^2\Leftrightarrow2a^2-a\left(2+3b\right)+b^2+b=0\left(1\right)\)

ta có \(\Delta_a=\left(2+3b\right)^2-8\left(b^2+b\right)=\left(b+2\right)^2.\)phương trình (1) có nghiệm là \(\orbr{\begin{cases}a=\frac{2+3b-\left(b+2\right)}{4}=\frac{b}{2}\\a=\frac{2+3b+\left(b+2\right)}{4}=b+1\end{cases}}\)

+) zới \(a=\frac{b}{2}=>2\sqrt{1-x}=\sqrt{1+x}\Leftrightarrow x=\frac{3}{5}\)

+) zới a=b+1\(=>\sqrt{1-x}=\sqrt{1+x}+1\Leftrightarrow x=\frac{-\sqrt{3}}{2}\)

17 tháng 3 2020

xét tứ giác ABOC có

\(\widehat{ABO}=\widehat{ACO}=90^0\)(t/c tiếp tuyến )

mà 2 góc này ở zị trí đối diện

=> tứ giác ABOC nối tiếp 

=>ABC=AOB

b)Zì A là giao điểm 2 tiếp tuyến AB zà AC

=>\(\hept{\begin{cases}AB=AC\\OB=OC\end{cases}=>OA}\)là đường trung trực của BC

=>\(OA\perp BC\)

ta có \(\widehat{BAE}+\widehat{ABE}=90^0\)( do tam giác ABE zuông tại E)

         \(\widehat{BAE}+\widehat{BOE}=90^0\)( do tam giác ABO zuông tại B)

=> \(\widehat{ABE}=\widehat{BOE}\)

xét tam giác ABE zà tam giác BOE có

\(\hept{\begin{cases}\widehat{AEB}=\widehat{BEO}\left(=90^0\right)\\\widehat{ABE}=\widehat{BOE}\left(cmt\right)\end{cases}=>}\)tam giác ABE \(~\)tam giác BOE (g.g)

=>\(\frac{AB}{BO}=\frac{AE}{BE}=>AB.BE=AE.BO\left(dpcm\right)\)

c)xét tứ giác IBDO có

\(\widehat{DBO}=\widehat{DIO}=90^0\)

mà 2 góc này cùng chắn cung OD=>IBDO là tứ giác nội tiếp

=>\(\widehat{EBO}=\widehat{ODF}\)(cùng chắn cung OI) (1)

ta có OB=OC => tam giác OBC cân tại O

=>\(\widehat{EBO}=\widehat{ECO}\)(2)

từ 1 zà 2 =>\(\widehat{ODF}=\widehat{ECO}\)hay \(\widehat{IDO}=\widehat{BCO}\)(3)

xét tứ giá IOCF có \(\widehat{ÒI}F=\widehat{OCF}=90^0\)

mà 2 góc này ở zị trí đối diện 

=> tứ giác IOCF nội tiếp

=>\(\widehat{IFO}=\widehat{ECO}\)(cùng chắn cung OI) (4)

từ 3 zà 4 

=>\(\widehat{IFO}=\widehat{DFO}=\widehat{FDO}\)

=>tam giacsDOF cân tại O

d)tam giác DOF cân => Oi là đường coa đồng thời là đường trung tuyến

=> I là trung điển của DF

mặt khác I là trung điểm của BE

=> tứ giác BDEF là hbh

=> BD//EF

hay AB//ÈF

xét tam giác ABC có

E là trung điểm cua BC (t/c tiếp tuyến)

EF//AB 

=> EF là đường trung bình của tam giác ABC

=> F là trung điểm của AC(dpcm

17 tháng 3 2020

a) Hoành độ giao điểm của ( P ) và ( d ) là nghiệm phương trình:

\(x^2=2mx-2m+3\) (2)

<=> \(x^2-2mx+2m-3=0\)

Có: \(\Delta'=m^2-\left(2m-3\right)=m^2-2m+3=\left(m-1\right)^2+2>0\)với mọi m

=> Với mọi m phương trình (2) luôn có hai nghiệm phân biết

=> Với mọi m (d) luôn cắt ( P ) tại hai điểm phân biệt 

___________

c) Để phương trình (1) có nghiệm điều kiện là: \(\Delta'=\left(k-1\right)^2-\left(k-3\right)=k^2-3k+4=\left(k-\frac{3}{2}\right)^2+\frac{7}{4}>0\)với mọi m

=> Phương trình (1) có 2 nghiệm \(x_1;x_2\)với mọi m 

Áp dụng định lí viets ta có: \(\hept{\begin{cases}x_1+x_2=2\left(k-1\right)\\x_1.x_2=k-3\end{cases}}\)mà \(x_1=\frac{5}{3}x_2\)

nên : \(\frac{5}{3}x_2+x_2=2k-2\)<=> \(\frac{8}{3}x_2=2k-2\)<=> \(x_2=\frac{3}{4}\left(k-1\right)\)

khi đó: \(x_1=\frac{5}{3}x_2=\frac{5}{4}\left(k-1\right)\)

Suy ra \(x_1.x_2=k-3\)<=> \(\frac{15}{16}\left(k-1\right)^2=k-3\)

<=> \(15k^2-46k+63=0\)(3)

có: \(\Delta\)<0 

=> (3) vô nghiệm

=> không tồn tại k