Rút gọn P=\(\left(x^2-1\right).\left(\frac{3x^2+3x-3}{x^2+x-2}+\frac{1}{x+1}+\frac{1}{x+2}-2\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\left(1-\frac{x}{x+1}\right)\div\left(\frac{x+3}{x-2}+\frac{2+x}{3-x}+\frac{x+2}{x^2-5x+6}\right)\)
ĐKXĐ : x ≠ -1 ; x ≠ 2 ; x ≠ 3 ; x ≠ 11/5
\(=\left(\frac{x+1}{x+1}-\frac{x}{x+1}\right)\div\left(\frac{x+3}{x-2}-\frac{x+2}{x-3}+\frac{x+2}{\left(x-2\right)\left(x-3\right)}\right)\)
\(=\frac{1}{x+1}\div\left(\frac{\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}-\frac{\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}+\frac{x+2}{\left(x-2\right)\left(x-3\right)}\right)\)
\(=\frac{1}{x+1}\div\left(\frac{x^2-9}{\left(x-2\right)\left(x-3\right)}-\frac{x^2-4}{\left(x-2\right)\left(x-3\right)}+\frac{x+2}{\left(x-2\right)\left(x-3\right)}\right)\)
\(=\frac{1}{x+1}\div\left(\frac{x^2-9-x^2+4+x+2}{\left(x-2\right)\left(x-3\right)}\right)\)
\(=\frac{1}{x+1}\div\frac{x-3}{\left(x-2\right)\left(x-3\right)}\)
\(=\frac{1}{x+1}\times\frac{x-2}{1}\)
\(=\frac{x-2}{x+1}\)
Áp dụng bất đẳng thức Cauchy–Schwarz dạng Engel ta có :
\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{\left(1+1\right)^2}{x^2+xy+y^2+xy}=\frac{4}{\left(x+y\right)^2}\)
Cần chỉ ra \(\frac{4}{\left(x+y\right)^2}\ge4\)
Ta có : \(x+y\le1\)
=> \(\left(x+y\right)^2\le1\)
=> \(\frac{1}{\left(x+y\right)^2}\ge1\)( nghịch đảo )
=> \(\frac{4}{\left(x+y\right)^2}\ge4\)( nhân 4 vào cả hai vế )
=> đpcm
Đẳng thức xảy ra <=> x = y = 1/2
Áp dụng bất đẳng thức Cauchy–Schwarz dạng Engel ta có :
\(VT\ge\frac{\left(2b+3c+2c+3a+2a+3b\right)^2}{a+b+c}\)
\(=\frac{\left(5a+5b+5c\right)^2}{a+b+c}=\frac{\left[5\left(a+b+c\right)\right]^2}{a+b+c}\)
\(=\frac{25\left(a+b+c\right)^2}{a+b+c}=25\left(a+b+c\right)=VP\)
=> đpcm
Đẳng thức xảy ra <=> a = b = c
Xét tam giác ABD và tam giác FBC có:
AB=FB ( cạnh tam giác đều FAB)
DB=BC ( cạnh tam giác đều DBC)
góc ABD = góc FBC ( cùng bằng góc ABC + 60 độ)
Suy ra tam giác ABD = tam giác FBC (C.G.C)
=> FC=AD
4x2 - 36x + 56
= 4(x2 - 9x + 14)
= 4(x2 - 2x - 7x + 14)
= 4[x(x - 2) - 7(x - 2)]
= 4(x - 2)(x - 7)
\(4x^2\)−36x+56=04x2−36x+56
⇒4(x2−9x+14)=0⇒4(x2−9x+14)
⇒4(x2−7x−2x+14)=0⇒4(x2−7x−2x+14)
⇒4x(x−2)−7(x−2)=0⇒4x(x−2)−7(x−2)
⇒4(x−7)(x−2)=0⇒4(x−7)(x−2)
⇒(x−7)(x−2)=0⇒(x−7)(x−2)
⇒[x−7=0x−2=0⇒[x−7=0x−2=0
⇒x=7;x=2⇒x=7;x=2.
Gọi chữ số hàng chục là a, chữ số hàng đơn vị là b.
Theo đề bài, ta có:
ab 7
=> 10a + b 7
=> 10a - 20b + 21b 7
=> 10. (a - 2b) + 21b 7
Vì 21b 7; 10 7
=> a - 2b 7
Phần khoảng trống là dấu chia hết nhé ( gần phần kết luận bạn ghi thêm dấu không chia hết vào 10 7). Lúc giải vẫn còn dấu mak :(