nêu tính chất của cơ
nêu ý nghĩa của hoạt động co cơ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=-x^2+x-1=-x^2+2.\frac{1}{2}x-\frac{1}{4}-\frac{3}{4}=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)
vì \(-\left(x-\frac{1}{2}\right)^2\le0\Rightarrow-\left(x-\frac{1}{2}\right)-\frac{3}{4}\le-\frac{3}{4}\)
vậy : \(max\left(A\right)=-\frac{3}{4}khi\left(x=\frac{1}{2}\right)\)
cách 1: ta thực hiện chia đa thức đơn thuần thì tìm được đa thức thương là \(x^2+x-1\), đa thức dư là \(a+1\)
cách 2: ta thực hiện nhóm:
\(A\left(x\right)=2x^3+x^2+2x^2+x-2x-1+a+1\)
\(\Leftrightarrow A\left(x\right)=x^2\left(2x+1\right)+x\left(2x+1\right)-\left(2x+1\right)+a+1\)
\(\Leftrightarrow A\left(x\right)=\left(2x+1\right)\left(x^2+x-1\right)+a-1=B\left(x\right)\left(x^2+x-1\right)+a+1\)
Do đó đa thức thương là \(x^2+x-1\), đa thức dư là \(a+1\)