Có 77 người đến nghe một buổi hòa nhạc. Số cách xếp 77 người này vào một hàng có 77 ghế là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề thi đánh giá năng lực
Với \(x=0\)thì \(0!=1\ne0\)nên \(x=0\)không là nghiệm.
Với \(x\ge1\)thì \(x=x!=\left(x-1\right)!.x\)
\(\Leftrightarrow\left(x-1\right)!=1\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-1=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\).
một đôi nam nữ vò mỗi quán
ok nha
mik chắc chắn
Đặt \(log_2x=t\).
Ta có: \(t^2-mt-4+2m< 0\)
\(\Leftrightarrow\left(t-2\right)\left(t+2-m\right)< 0\)(1)
- Nếu \(m-2< 2\Leftrightarrow m< 4\)(1) tương đương với:
\(m-2< t< 2\)
\(log_2x< 2\Leftrightarrow x< 4\Rightarrow n=3\)thỏa mãn.
Vì \(m\)nguyên dương nên \(m\in\left\{1,2,3\right\}\).
- Nếu \(m-2=2\Leftrightarrow m=4\)(1) tương đương với:
\(\left(t-2\right)^2< 0\)vô nghiệm suy ra \(n=0\)không thỏa mãn.
- Nếu \(m-2>2\Leftrightarrow m>4\)(1) tương đương với:
\(2< t< m-2\)
\(log_2x>2\Leftrightarrow x>4\).
Để \(n\in\left[1,251\right]\)thì \(x< 256\)suy ra \(log_2x< log_2256=8\Rightarrow m-2\le8\Leftrightarrow m\le10\).
suy ra \(4< m\le10\)có \(6\)giá trị nguyên dương của \(m\).
Tổng cộng tất cả các trường hợp thì có tổng cộng \(9\)giá trị của \(m\)thỏa mãn.
Chọn C.
Đặt \(z=a+bi\), \(z\ne i\).
\(\left|z-1+2i\right|=\sqrt{10}\Leftrightarrow\left(a-1\right)^2+\left(b+2\right)^2=10\)
\(\Leftrightarrow a^2-2a+1+b^2+4b+4=10\)
\(\Leftrightarrow a^2+b^2=5+2a-4b\)(1)
\(\frac{2z+3-i}{z-i}=\frac{\left(2a+3\right)+\left(2b-1\right)i}{a+\left(b-1\right)i}=\frac{\left[\left(2a+3\right)+\left(2b-1\right)i\right]\left[a-\left(b-1\right)i\right]}{a^2+\left(b-1\right)^2}\)
\(=\frac{a\left(2a+3\right)+\left(2b-1\right)\left(b-1\right)+\left[a\left(2b-1\right)-\left(2a+3\right)\left(b-1\right)\right]i}{a^2+\left(b-1\right)^2}\)
là số thuần ảo nên \(a\left(2a+3\right)+\left(2b-1\right)\left(b-1\right)=2a^2+3a+2b^2-3b+1=0\)
\(\Leftrightarrow2\left(5+2a-4b\right)+3a-3b+1=0\)
\(\Leftrightarrow7a-11b+11=0\)
\(\Leftrightarrow a=\frac{11b-11}{7}\)
Thế vào (1) ta được:
\(\left(\frac{11b-11}{7}\right)^2+b^2-5-\frac{2\left(11b-11\right)}{7}+4b=0\)
\(\Leftrightarrow\orbr{\begin{cases}b=1\Rightarrow a=0\\b=\frac{3}{17}\Rightarrow a=\frac{-22}{17}\end{cases}}\)
Chỉ có \(z=\frac{-22}{17}+\frac{3}{17}i\)thỏa mãn.
Vậy có \(1\)số phức \(z\)thỏa mãn ycbt.
bạn tự vẽ hình nhé
gọi M là trung điểm AC
tam giác ABC vuông tại B => MA = MB = MC = 1/2AC (1)
\(\Delta AC_1C\)vuông tại \(C_1\)=> \(MA=MC=MC_1=\frac{1}{2}AC\) (2)
\(\hept{\begin{cases}BC\perp AB\\BC\perp SA\end{cases}}\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp AB_1\)
lại có \(AB_1\perp SB\) => \(AB_1\perp\left(SBC\right)\Rightarrow AB_1\perp B_1C\)
\(\Delta AB_1C\perp B_1\) => \(MA=MB_1=MC=\frac{1}{2}AC\) (3)
từ (1,2,3) => M là tâm khối cầu ngoại tiếp khối chóp \(ABCC_1B_1\)
\(R=\frac{1}{2}AC=\frac{a\sqrt{6}}{2}\) => \(V=\frac{4}{3}\pi R^3=\sqrt{6}\pi a^3\)
\(f\left(x\right)=\sqrt{x+2}\)
\(t=\sqrt{x+2}\Rightarrow t^2=x+2\Rightarrow2tdt=dx\)
Từ tính nguyên hàm của \(\sqrt{x+2}\)bạn chuyển về tính nguyên hàm của \(2t^2\).
Kết quả: \(F\left(x\right)=\frac{2}{3}\sqrt{\left(x+2\right)^3}+C\).
đáp án câu hỏi:
a.720 b.35 c.5040 d.1680
ta có người thứ nhất có 7 cách người thứ 2 sẽ có 6 cách người thứ 3 sẽ có 5 cách.....
mà mỗi người có thể đổi chỗ cho nhau lên có số cách xếp là:
\(7!=1.2.3.4.5.6.7=5040\)
chọn (c) 5040