K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
6 tháng 7 2021

Đặt \(z=a+bi,\left(a,b\inℝ\right)\).

Ta có: \(\left(3+4i\right)z+\left(6-2i\right)\overline{z}=5+10i\)

\(\Leftrightarrow\left(3+4i\right)\left(a+bi\right)+\left(6-2i\right)\left(a-bi\right)=5+10i\)

\(\Leftrightarrow3a-4b+\left(4a+3b\right)i+6a-2b+\left(-2a-6b\right)i-5-10i=0\)

\(\Leftrightarrow\left(3a-4b+6a-2b-5\right)+\left(4a+3b-2a-6b-10\right)i=0\)

\(\Leftrightarrow\hept{\begin{cases}9a-6b=5\\2b-3b=10\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-3\\b=-\frac{16}{3}\end{cases}}\)

Vậy \(z=-3-\frac{16}{3}i\),

Đề thi đánh giá năng lực

DD
6 tháng 7 2021

\(\frac{2-iz}{2+i}-\frac{z+2i}{1-2i}=2\overline{z}\)

\(\Leftrightarrow\frac{2-i\left(a+bi\right)}{2+i}-\frac{a+bi+2i}{1-2i}=2\left(a-bi\right)\)

\(\Leftrightarrow\frac{\left(b+2-ai\right)\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}-\frac{\left[a+\left(b+2\right)i\right]\left(1+2i\right)}{1-2i}=2\left(a-bi\right)\)

\(\Leftrightarrow\frac{2\left(b+2\right)-a-\left(2a+b+2\right)i}{5}-\frac{a-2b-4+\left(2a+b+2\right)i}{5}=2\left(a-bi\right)\)

\(\Leftrightarrow\left[\left(2b+4\right)-a-\left(a-2b-4\right)-10a\right]-\left(2a+b+2+2a+b+2-10b\right)i=0\)

\(\Leftrightarrow\hept{\begin{cases}-12a+4b=-8\\4a-8b=-4\end{cases}}\Leftrightarrow a=b=1\).

\(a^2+b^2-ab=1^2+1^2-1.1=1\)

6 tháng 7 2021

Bài giải:

Để có thể giải quyết được bài toán trên, bạn đọc cần tìm được 2 điểm cực trị của hàm số và viết phương trình đường thẳng đi qua chúng.

Hàm số y =  x³ - 3x² + 1 có y’ = 3x² - 6x = 0 ⇔ x= 0 hoặc x = 2

x = 0 ⇒  y = 1

x = 2 ⇒  y = -3

⇒   Hàm số có hai điểm cực trị A (0;1), B (2; -3). Đường thẳng đi qua hai điểm cực trị của hàm số có phương trình 2x + y – 1 = 0.

Đường thẳng (2m - 1)x - y + 3 + m = 0 vuông góc với đường thẳng

2x + y – 1 = 0  ⇔   hai véc-tơ pháp tuyến vuông góc với nhau.

a1. a2 + b1.b2 = 0 ⇔ (2m - 1) 2 + (-1)1 = 0  ⇔ 4m - 2 - 1 = 0 ⇔ m = 3/4.

Đáp án đúng là B.

tích cho mik nha.

6 tháng 7 2021

Bài giải:

Ta có y’ = x² – 2mx + m² – 4; y” = 2x - 2m

Hàm số đạt cực đại tại x = 3 khi và chỉ khi y'(3) = 0 , y”(3) < 0.

⇔ 9 - 6m + m² – 4 = 0 và 6 - 2m < 0

⇔ m² – 6m + 5 = 0 ; m < 3

⇔ m = 1 hoặc m = 5; m < 3

⇔ m = 1 thoả mãn

Đáp án đúng là B.

tích cho mik nha.

2 tháng 7 2021

\(y=f\left(x\right)=\left(x-1\right)\left(2x-3\right)\) đồng biến khi: \(\left(x-1\right)\left(2x-3\right)>0\)

\(\Leftrightarrow x-1>0;2x-3>0\) hoặc \(x-1< 0;2x-3< 0\)

\(\Leftrightarrow x>1;x>\frac{3}{2}\) hoặc \(x< 1;x< \frac{3}{2}\)

\(\Leftrightarrow x>\frac{3}{2}\) hoặc \(x< 1\)

\(y=f\left(x\right)=\left(x-1\right)\left(2x-3\right)\) nghịch biến khi: \(\left(x-1\right)\left(2x-3\right)< 0\)

\(\Leftrightarrow x-1>0;2x-3< 0\) hoặc \(x-1< 0;2x-3>0\)

\(\Leftrightarrow x>1;x< \frac{3}{2}\) hoặc \(x< 1;x>\frac{3}{2}\)

\(\Leftrightarrow1< x< \frac{3}{2}\)

19 tháng 10 2021

Gọi P(x,y) là phép thế của phương trình hàm đề bài.

P(x,x) cho ta: f(0)=x2-2xf(x)+f2(x). (Ở đây, f2(x) là f(x)f(x) chứ không phải là f(f(x))).

Đến đây cho x=0 ta suy ra: f(0)=f2(0). Ta được f(0)=0 hoặc f(0)=1. 

Trường hợp 1: f(0)=0 suy ra: f2(x)-2xf(x)+x2=0 với mọi x thực. Suy ra: (f(x)-x)2=0 với mọi x nên f(x)=x với mọi x.

Thử lại thấy thỏa mãn.

Trường hợp 2: f(0)=1 tương tự trường hợp 1, ta suy ra với mọi x thì f(x)=x-1 hoặc f(x)=x+1.

P(x,0) suy ra: f(x2)=x2+1. Do đó với mọi x không âm thì f(x)=x+1. 

P(0,y) suy ra: f(y2)=f2(y)-2y suy ra: (y+1)2=f2(y) với mọi y thực.

Nếu tồn tại a thực khác 0 sao cho: f(a)=a-1. Thay y=a ta được: (a+1)2=f2(a)=(a-1)2 suy ra:

a2+2a+1=a2-2a+1 suy ra: a=0(vô lí). Do đó: f(x)=x+1 với mọi x thực.

Thử lại không thỏa mãn. Vậy f(x)=x với mọi x.

29 tháng 6 2021

10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

30 tháng 6 2021

1000100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000