K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2020

Đặt \(A=\frac{x+y}{xyz}\)

Theo bài ra có ta có các số nguyên dương x,y,z có tổng =1

=> x+y+z=1

=> \(\left[\left(x+y\right)+z\right]^2=1\). Áp dụng BĐT \(\left(a+b\right)^2\ge4ab\)ta có:

\(1=\left[\left(x+y\right)+z\right]^2\ge4\left(x+y\right)z\)

Nhân 2 vế với số dương \(\frac{x+y}{xyz}\)được

\(\frac{x+y}{xyz}\ge\frac{4z\left(x+y\right)^2}{xyz}\ge\frac{4x\cdot4xy}{xyz}=16\)

MinA=16 <=> \(\hept{\begin{cases}x+y=1\\x=y\\x+y+z=1\end{cases}\Leftrightarrow x=y=\frac{1}{4};z=\frac{1}{2}}\)

Vậy MinA =16 đạt được khi \(x=y=\frac{1}{4};z=\frac{1}{2}\)

26 tháng 4 2020

là sao

26 tháng 4 2020

Gọi vận tốc người đi xe đạp là x ( > 0; km/h) 

Vận tốc của người đi xe máy là: 1,5 x

Thời gian hai xe đi được là: 11 - 6 = 5 ( h ) 

Quãng đường người đi xe đạp đi được  đến lúc gặp nhau là: 5x (km)

Quãng đường người đi xe máy đi được đến lúc gặp nhau là: 5.1,5x = 7,5 x ( km)

Theo bài ra ta có: 5x + 7,5 x = 250 <=> x = 20km/h 

Vậy vận tốc người đi xe đạp là 20km/h và của người đi xe máy là: 1,5 x 20 = 30 km/h

26 tháng 4 2020

\(\frac{1}{x^2-3x+2}-\frac{1}{x-2}=2\) đkxđ \(x\ne1;2\)

\(\Leftrightarrow\frac{1}{\left(x-1\right)\left(x-2\right)}-\frac{1}{x-2}=2\)

\(\Leftrightarrow\frac{1}{\left(x-1\right)\left(x-2\right)}-\frac{1\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}=2\)

\(\Leftrightarrow1-x+1=2\)

\(\Leftrightarrow2-x=2\)

\(\Leftrightarrow x=0\left(tmđk\right)\)

27 tháng 4 2020

\(\left(3\sqrt{2}+\sqrt{6}\right).\sqrt{6-3\sqrt{3}}\)                                                                                                                                                       =\(\sqrt{2}\left(3+\sqrt{3}\right).\sqrt{6-3\sqrt{3}}\)                                                                                                                                                 =\(\left(3+\sqrt{3}\right).\sqrt{2.\left(6-3\sqrt{3}\right)}\)                                                                                                                                               =\(\left(3+\sqrt{3}\right).\sqrt{12-6\sqrt{3}}\)                                                                                                                                                       =\(\left(3+\sqrt{3}\right).\sqrt{\left(3\right)^2-2.3.\sqrt{3}+\left(\sqrt{3}\right)^2}\)                                                                                                                     =   \(\left(3+\sqrt{3}\right).\sqrt{\left(3-\sqrt{3}\right)^2}\)                                                                                                                                                 = \(\left(3+\sqrt{3}\right).|3-\sqrt{3}|\)                                                                                                                                                                 =\(\left(3+\sqrt{3}\right).\left(3-\sqrt{3}\right)\)                                                                                                                                                             = \(9-3=6\)

26 tháng 4 2020

Mình nghĩ nên sửa đề y=2(m-1)x-m2+6 và parobol (P)y=x2

a) Với m=3 ta được (d): y=4x-3

Hoành độ giao điểm của đường thẳng (d) và parabol (P0 là nghiệm của phương trình \(x^2=4x-3\)

<=> x2-4x+3=0

<=> x2-3x-x+3=0

<=> x(x-3)-(x-3)=0

<=> (x-3)(x-1)=0

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=1\\x=3\Rightarrow y=9\end{cases}}}\)

Vậy giao điểm của (d) và (P) là A(1;1); B(3;9)

b) Phương trình hoành độ của (d) cắt (P) là nghiệm của phương trình x2-2(m-1)x-m2+6

<=> x2-2(m-1)x+m2-6=0 (1)

<=> (m-1)2-(m2-6)=7-2m

Đường thẳng (d) cắt (P) tại 2 điểm phân biệt khi và chỉ khi phương trình (1) có 1 nghiệm phân biệt

<=> 7-2m>0

<=> \(m< \frac{7}{2}\)(*)

Gọi x1;x2 là nghiệm của phương trình (1)

Khi đó thoe định lý Vi-et ta có:

\(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1\cdot x_2+m^2=6\end{cases}}\)

Theo bài ra ta có: \(x_1^2+x_2^2=6\Leftrightarrow x_1+x_2^2+2x_1x_2=16\)

\(4\left(m^2-1\right)-2\left(m^2-6\right)=16\)

<=>2m2-8m=0

<=> m=0 hoặc m=4

m=0 (tmđk (*))

m=4 (ktmđk (*))

Vậy m=0 là giá trị cần tìm

26 tháng 4 2020

      x2 + \(2\sqrt{5}x+4=0\)

Có \(\Delta'=\left(\sqrt{5}\right)^2-4=5-4\)

            = 1 

-> x1 = \(\frac{-\sqrt{5}+1}{1}=1-\sqrt{5}\)

     x2 =- \(\sqrt{5}-1\)

26 tháng 4 2020

Phương trình \(x^2+2\sqrt{5}x+4=0\) ta có:

\(\Delta'=\left(\sqrt{5}\right)^2-4=1\Rightarrow\sqrt{\Delta'}=1\)

=> PT có 2 nghiệm \(\hept{\begin{cases}x_1=\frac{-\sqrt{5}-1}{2}\\x_2=\frac{-\sqrt{5}+1}{2}\end{cases}}\)

26 tháng 4 2020

A, ta có: \(\Delta’\)=m2-1

Vậy trình có 2 nghiệm phân biệt <=> m2-1>0 => m>1

B,Phương trình có nghiệm kép khi: m2-1=0 => m=+- 1

Nghiem kép đó là: 0

26 tháng 4 2020

\(x^2+2\left(m+1\right)x+2m+2=0\)

\(\Delta'=\left(m+1\right)^2-\left(2m+2\right)=m^2-1\)

a, Để phương trình có hai nghiệm phân biệt thì:

\(\Delta'>0\)

\(\Leftrightarrow m^2>1\)

\(\Leftrightarrow m^2-1>0\)

\(\Leftrightarrow m< -1;m>1\)

b, Phương trinh có nghiệm kép khi:

\(\Delta'\ge0\)

\(\Leftrightarrow m^2-1\ge0\)

\(\Leftrightarrow m\le-1;m\ge1\)

Theo Viet ta có:

\(x_1+x_2=-2\left(m+1\right)\)

\(x_1x_2=2\left(m+1\right)\)

\(x_1^2+x_2^2=8\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)

\(\Leftrightarrow4m^2+4m-8=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=1\\m=-2\end{cases}}\)

So với điều kiện phương trình có nghiệm m=1 ; m =-2 

26 tháng 4 2020

\(E= {\sum {(yz)^2 \over xy+zx}}\)>=3/2 (AD BĐT Nesbit)

Dấu = xảy ra <=>x=y=z=1

26 tháng 4 2020

đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\Rightarrow abc=\frac{1}{xyz}=1\)

Ta có : \(x+y=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=c\left(a+b\right)\)

Tương tự : \(y+z=a\left(b+c\right);x+z=b\left(c+a\right)\)

\(\Rightarrow E=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{3\sqrt[3]{abc}}{2}=\frac{3}{2}\)

\(\Rightarrow E\ge\frac{3}{2}\)

Vậy GTNN của E là \(\frac{3}{2}\Leftrightarrow x=y=z=1\)

26 tháng 4 2020

Bài 1 : Bạn tự vẽ hinh 

a,

I là trung điểm AC và IN//AB nên IN là đường trung bình trong tam giác ABC

Suy ra N là trung điểm BC

I là trung điểm AC và IM//BC nên IM là đường trung bình trong tam giác ABC

Suy ra M là trung điểm BA

Do đó MN là đường trung bình của tam giác ABC nên MN//AC và MN=1/2 AC=5 (cm) 

b,

MN// AC nên AMNC là hình thang

Mặt khác AM=1/2AB=1/2BC=CN

MN<AC nên AMNC là hình thang cân

IN //AB hay IN//BM

IM//BC hay IM//BN nên IMBN là hình bình hành

Mặt khác ABC cân tại B nên BI vuông góc với AC hay BI vuông góc với MN

Do đó IMBN là hình thoi

c,

IMBN là hình thoi nên O là trung điểm IB và MN

Tứ giác BICK có hai đường chéo BC và IK cắt nhau tại trung điểm mỗi đường nên BICK là hình bình hành

Do đó BK//IC//AI và BK=IC=IA

hay ABKI là hình bình hành

O là trung điểm của BI nên O cũng là trung điểm AK

Do vậy A,O,K thẳng hàng

26 tháng 4 2020

a) Ta có I là trung điểm AC; IN//AB 

=> IN là đường trung bình \(\Delta\)ABC

=> N là trung điểm BC

Cmtt: M là trung điểm AB

=> MN là đường trung bình \(\Delta\)ABC

=> MN//AC và \(MN=\frac{1}{2}AC=\frac{1}{2}\cdot10=5\left(cm\right)\)

b) Tứ giác AMNC có: MN//AC
=> Tứ giác AMNC là hình thang

Lại có: \(AM=\frac{1}{2}AB\)(do M là trung điểm AB)

\(AN=\frac{1}{2}CB\)(Do N là trung điểm AC)

\(AB=\frac{1}{2}CB\)(do \(\Delta\)ABC cân tại B)

=> AMNC là hình thang cân

Tứ giác IMBN có: IM//BN và IN//BM

=> Tứ giác IMBN là hình bình hành

Lại có MB=BN\(\left(=\frac{1}{2}AD=\frac{1}{2}BC\right)\)

=> IMBN là hình thoi

c) N là trung điểm IK và O là trung điểm BI

=> ON là đường trung bình của \(\Delta\)IBK

=> ON//BK và ON//AI

=> BK//AI

IN//AB => IK//AB

=> Tứ giác ABKI là hình bình hành

Có D là trung điểm BI

=> O là trung điểm của AK

=> O;A;K thẳng hàng

28 tháng 4 2020

N A B H M C O K I

1) Xét tứ giác CIOH có \(\widehat{CIO}+\widehat{CHO}=180^o\)nên là tứ giác nội tiếp

suy ra 4 điểm C,H,O,I cùng thuộc 1 đường tròn

2) vì OI \(\perp\)AC nên OI là đường trung trực của AC

\(\Rightarrow\widehat{AOM}=\widehat{COM}\)

Xét \(\Delta AOM\)và \(\Delta COM\)có :

\(\widehat{AOM}=\widehat{COM}\)( cmt )  

OM ( chung )

OA = OC

\(\Rightarrow\Delta AOM=\Delta COM\left(c.g.c\right)\)

\(\Rightarrow\widehat{OAM}=\widehat{OCM}=90^o\)

\(\Rightarrow OC\perp MC\)hay MC là tiếp tuyến của đường tròn O

3) Ta có : \(\hept{\begin{cases}\widehat{AOM}+\widehat{IAO}=90^o\\\widehat{IAO}+\widehat{HBC}=90^o\end{cases}}\Rightarrow\widehat{AOM}=\widehat{HBC}\)

Xét \(\Delta AOM\)và \(\Delta HCB\)có :

\(\widehat{AOM}=\widehat{HBC}\)\(\widehat{MAO}=\widehat{CHB}=90^o\)

\(\Rightarrow\Delta AOM~\Delta HBC\left(g.g\right)\)

4) Gọi N là giao điểm của BC và AM

Xét \(\Delta NAB\)có AO = OB ; OM // BN nên AM = MN

CH // AN \(\Rightarrow\frac{CK}{NM}=\frac{KH}{AM}\left(=\frac{BK}{BM}\right)\)

Mà AM = NM nên CK = KH 

\(\Rightarrow\)K là trung điểm của CH