Một khu vườn hình chữ nhật có chu vi là 94 m. Nếu tăng chiều rộng lên 3 lần, tăng chiều dài lên 4 lần thì chu vi mới là 344 m. Tính chiều dài, chiều rộng của khu vườn đó. Trả lời: Chiều rộng là: ? m. Chiều dài là: ?m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều rộng HCN là x (đk: m; x > 0)
=> chiều dài HCN là 5x
Theo bài ra, ta có: (x + 2)(5x - 5) - 5x.x = 10
<=> 5x2 + 5x - 10 - 5x2 = 10
<=>5x = 20
<=> x = 4
Diện tích khu đất là : 4 . 20 = 80 (m2)
a, Thay m = -1/2 vào pt trên ta đc
\(-\frac{1}{2}\left(x^2-4x+3\right)+2\left(x-1\right)\)
\(=-\frac{\left(x-3\right)\left(x-1\right)}{2}+2x-2\)
a) Với m=\(\frac{-1}{2}\)ta có:
\(\frac{-1}{2}\left(x^2-4x+3\right)+2\left(x-1\right)=0\)
<=> \(x^2-8x+7=0\)
Vì a+b+c=1+(-8)+7=0
Nên pt có nghiệm \(x_1=1;x_2=7\)
b) +) nếu m=0, pt có dạng 2(x-1)=0 <=> x=1
+) nếu m\(\ne\)0, pt có dạng mx2+2(1-2m)x+3m-2=0
\(\Delta'=\left(1-2m\right)^2-k\left(3m-2\right)=1-4m-3m^2+2m\)
\(=m^2-2m+1=\left(m-1\right)^2\ge0\forall m\)
Vậy pt có nghiệm với mọi m
Gọi 2 số cần tìm là a và b ( \(a,b\inℕ^∗\))
Theo bài, ta có: \(\frac{a}{b}=\frac{4}{7}\)\(\Rightarrow\frac{a}{4}=\frac{b}{7}\)
Đặt \(\frac{a}{4}=\frac{b}{7}=k\left(k\inℕ^∗\right)\)\(\Rightarrow a=4k\); \(b=7k\)
Nếu lấy số thứ nhất chia cho 4, số thứ 2 chia cho 5 thì thương thứ nhất bé hơn thương thứ hai 2 đơn vị
\(\Rightarrow\)Ta có phương trình : \(\frac{7k}{5}-\frac{4k}{4}=2\)
\(\Leftrightarrow\frac{7k}{5}-k=2\)\(\Leftrightarrow\frac{7k}{5}-\frac{5k}{5}=\frac{10}{2}\)
\(\Leftrightarrow7k-5k=10\)\(\Leftrightarrow2k=10\)\(\Leftrightarrow k=5\)( thoả mãn ĐK )
\(\Rightarrow a=5.4=20\)và \(b=5.7=35\)
Vậy số bé là 20 và số lớn là 35
Lần đầu e thấy đề này đấy cj .
\(\sqrt[4]{3}.243^{\frac{2x+3}{x+8}}=3^{-2}.9^{\frac{x-8}{x+2}}\)
\(\sqrt[4]{3}.243^{\frac{2x+3}{x+8}}=\frac{1}{9}.9^{\frac{x+8}{x+2}}\)
\(\sqrt[4]{3}.243^{\frac{2x-3}{x+8}}=9^{\frac{x+8}{x+2}}-1\)
\(\sqrt[4]{3}.3^5^{\frac{2x-3}{x+8}}=3^2^{\left(\frac{x+8}{x+2}-1\right)}\)
\(\frac{1}{4}+\frac{5\left(2x+3\right)}{x+8}=2\left(\frac{x+8}{x+2}-1\right)\)
\(\frac{x+8}{4x+32}+\frac{20\left(2x+3\right)}{4x+32}=2\left(\frac{x+8}{x+2}-1\right)\)
Dễ rồi cj lm nốt nhé !
ĐK: \(x\ne-8;-2\)
\(\sqrt[4]{3}.243^{\frac{2x+3}{x+8}}=3^{-2}.9^{\frac{x+8}{x+2}}\)
<=> \(3^{\frac{1}{4}}.3^{5.\frac{2x+3}{x+8}}=3^{-2}.\left(3\right)^{2.\frac{x+8}{x+2}}\)
<=> \(3^{\frac{1}{4}+5.\frac{2x+3}{x+8}}=\left(3\right)^{-2+2.\frac{x+8}{x+2}}\)
<=> \(\frac{1}{4}+5.\frac{2x+3}{x+8}=-2+2.\frac{x+8}{x+2}\)
<=> \(\frac{10x+15}{x+8}-\frac{2x+16}{x+2}+\frac{9}{4}=0\)
<=>4 ( 10x + 15 ) ( x + 2 ) -4 ( 2x + 16 ) ( x + 8 ) + 9 ( x + 8 ) ( x + 2 ) = 0
<=> 41 x^2 +102x - 248 = 0 ( giải đenta)
<=> x = -4 hoặc x = 62/41 ( thỏa mãn )
Vậy ...
Sửa đề: \(x^2+\left(m+1\right)x+m=0\)
a) Phương trình luôn có nghiệm với mọi m
Thật vậy ta có: 1 - ( m + 1 ) + m = 0
=> phương trình luôn có 1 nghiệm x = - 1.
b) Theo định lí viet ta có:\(x_1+x_2=-\left(m+1\right);x_1x_2=m\)
=> \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(m+1\right)^2-2m=m^2+1\)
Đặt \(A=\frac{x+y}{xyz}\)
Theo bài ra có ta có các số nguyên dương x,y,z có tổng =1
=> x+y+z=1
=> \(\left[\left(x+y\right)+z\right]^2=1\). Áp dụng BĐT \(\left(a+b\right)^2\ge4ab\)ta có:
\(1=\left[\left(x+y\right)+z\right]^2\ge4\left(x+y\right)z\)
Nhân 2 vế với số dương \(\frac{x+y}{xyz}\)được
\(\frac{x+y}{xyz}\ge\frac{4z\left(x+y\right)^2}{xyz}\ge\frac{4x\cdot4xy}{xyz}=16\)
MinA=16 <=> \(\hept{\begin{cases}x+y=1\\x=y\\x+y+z=1\end{cases}\Leftrightarrow x=y=\frac{1}{4};z=\frac{1}{2}}\)
Vậy MinA =16 đạt được khi \(x=y=\frac{1}{4};z=\frac{1}{2}\)
Gọi vận tốc người đi xe đạp là x ( > 0; km/h)
Vận tốc của người đi xe máy là: 1,5 x
Thời gian hai xe đi được là: 11 - 6 = 5 ( h )
Quãng đường người đi xe đạp đi được đến lúc gặp nhau là: 5x (km)
Quãng đường người đi xe máy đi được đến lúc gặp nhau là: 5.1,5x = 7,5 x ( km)
Theo bài ra ta có: 5x + 7,5 x = 250 <=> x = 20km/h
Vậy vận tốc người đi xe đạp là 20km/h và của người đi xe máy là: 1,5 x 20 = 30 km/h
\(\frac{1}{x^2-3x+2}-\frac{1}{x-2}=2\) đkxđ \(x\ne1;2\)
\(\Leftrightarrow\frac{1}{\left(x-1\right)\left(x-2\right)}-\frac{1}{x-2}=2\)
\(\Leftrightarrow\frac{1}{\left(x-1\right)\left(x-2\right)}-\frac{1\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}=2\)
\(\Leftrightarrow1-x+1=2\)
\(\Leftrightarrow2-x=2\)
\(\Leftrightarrow x=0\left(tmđk\right)\)
minh hoc lop 2
chiều dài là 16m chiều rộng là 31m