Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2+y2_xy-3x+3=0
x2+y2-xy-3x=0-3=(-3)
x2+y2-xy=(-3):3=(-1)
x2+y2=(-1)+x.y
2x+y=
...............................................................CHỊU
P=x2010+y10
x:y thuoc 0
\(\left(\frac{x}{xy-y^2}+\frac{2x-y}{xy-x^2}\right):\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(=\left(\frac{x}{y\left(x-y\right)}-\frac{2x-y}{x\left(y-x\right)}\right):\left(\frac{y}{xy}-\frac{x}{xy}\right)\)
\(=\left(\frac{x}{y\left(x-y\right)}+\frac{2x-y}{x\left(x-y\right)}\right):\left(\frac{y-x}{xy}\right)\)
\(=\left(\frac{x^2}{xy\left(x-y\right)}+\frac{\left(2x-y\right)y}{xy\left(x-y\right)}\right):\left(\frac{y-x}{xy}\right)\)
\(=\frac{x^2+2xy-y^2}{xy\left(x-y\right)}.\frac{xy}{-\left(x-y\right)}=\frac{x^2+2xy-y^2}{-\left(x-y\right)}\)
\(x^3+5x^2-4x-20=0\)
\(\Leftrightarrow x^2\left(x+5\right)-4\left(x+5\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x+5\right)=0\Leftrightarrow x=\pm2;-5\)
\(\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}=\frac{1+x+1-x}{\left(1-x\right)\left(1+x\right)}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)\(=\frac{2}{1-x^2}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}=\frac{2\left(1+x^2\right)+2\left(1-x^2\right)}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)\(=\frac{4}{1-x^4}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}=\frac{4\left(1+x^4\right)+4\left(1-x^4\right)}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{8}{1-x^8}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}=\frac{8\left(1+x^8\right)+8\left(1-x^8\right)}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{16}{1+x^{16}}\)
\(=\frac{16}{1-x^{16}}+\frac{16}{1+x^{16}}=\frac{16\left(1+x^{16}\right)+16\left(1-x^{16}\right)}{\left(1-x^{16}\right)\left(1+x^{16}\right)}=\frac{32}{1-x^{32}}\)