K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(B=\left(5-\dfrac{3}{4}+\dfrac{1}{5}\right)-\left(6+\dfrac{7}{4}-\dfrac{8}{5}\right)-\left(2-\dfrac{5}{4}+\dfrac{16}{5}\right)\)

\(=5-\dfrac{3}{4}+\dfrac{1}{5}-6-\dfrac{7}{4}+\dfrac{8}{5}-2+\dfrac{5}{4}-\dfrac{16}{5}\)

\(=\left(5-6-2\right)+\left(-\dfrac{3}{4}-\dfrac{7}{4}+\dfrac{5}{4}\right)+\left(\dfrac{1}{5}+\dfrac{8}{5}-\dfrac{16}{5}\right)\)

\(=-3+\dfrac{-5}{4}+\dfrac{-7}{5}=-3-1,25-1,4=-5,65\)

21 tháng 6 2024

Olm chào em, em chưa hiểu chỗ nào em nhỉ?

DT
21 tháng 6 2024

\(\dfrac{2}{3}-\left(-\dfrac{1}{4}\right)+\dfrac{3}{5}-\dfrac{7}{45}-\left(-\dfrac{5}{9}\right)+\dfrac{1}{12}+\dfrac{1}{35}\\ =\dfrac{2}{3}+\dfrac{1}{4}+\dfrac{3}{5}-\dfrac{7}{45}+\dfrac{5}{9}+\dfrac{1}{12}+\dfrac{1}{35}\\ =\left(\dfrac{2}{3}+\dfrac{1}{4}+\dfrac{1}{12}\right)+\left(\dfrac{3}{5}+\dfrac{5}{9}-\dfrac{7}{45}\right)+\dfrac{1}{35}\\ =\left(\dfrac{8}{12}+\dfrac{3}{12}+\dfrac{1}{12}\right)+\left(\dfrac{27}{45}+\dfrac{25}{45}-\dfrac{7}{45}\right)+\dfrac{1}{35}\\ =\dfrac{12}{12}+\dfrac{45}{45}+\dfrac{1}{35}\\ =1+1+\dfrac{1}{35}\\ =2+\dfrac{1}{35}\\ =\dfrac{70}{35}+\dfrac{1}{35}=\dfrac{71}{35}\)

21 tháng 6 2024

\(\dfrac{2}{3}-\left(-\dfrac{1}{4}\right)+\dfrac{3}{5}-\dfrac{7}{45}-\left(-\dfrac{5}{9}\right)+\dfrac{1}{12}+\dfrac{1}{35}\)

\(=\dfrac{2}{3}+\dfrac{1}{4}+\dfrac{3}{5}-\dfrac{7}{45}+\dfrac{5}{9}+\dfrac{1}{12}+\dfrac{1}{35}\)

\(=\left(\dfrac{2}{3}+\dfrac{1}{4}+\dfrac{1}{12}\right)+\left(\dfrac{3}{5}+\dfrac{1}{35}\right)+\left(-\dfrac{7}{45}+\dfrac{5}{9}\right)\)

\(=\left(\dfrac{8}{12}+\dfrac{3}{12}+\dfrac{1}{12}\right)+\left(\dfrac{21}{35}+\dfrac{1}{35}\right)+\left(-\dfrac{7}{45}+\dfrac{25}{45}\right)\)

\(=1+\dfrac{22}{35}+\dfrac{18}{45}\)

\(=\dfrac{315}{315}+\dfrac{198}{315}+\dfrac{126}{315}\)

\(=\dfrac{71}{35}\)

21 tháng 6 2024

Bài 2:

a) \(A=\left\{0;1;2;3;4;5\right\}\)

\(A=\left\{x\in N|0\le x\le5\right\}\) 

b) \(B=\left\{G,I,A,Đ,N,H\right\}\) 

c) Tập hợp giao của A và B là C 

\(\Rightarrow C=\varnothing\) 

d) Tập hợp D là hợp của A và B 

\(\Rightarrow D=\left\{0;1;2;3;4;5;G;I;A;Đ;N;H\right\}\)

21 tháng 6 2024

Bài 1:

a) \(A=\left\{x=2k+1|k\in N,0\le k\le6\right\}\) 

\(B=\left\{x\in N|0\le x\le8\right\}\) 

b) C là giao của tập hợp A và B 

\(\Rightarrow C=\left\{1;3;5;7\right\}\)

\(\Rightarrow C=\left\{x=2k+1|k\in N,0\le k\le3\right\}\)

c) D là hợp của tập hơn A và B 

\(\Rightarrow D=\left\{0;1;2;3;4;5;6;7;8;9;11;13\right\}\) 

d) Các phát biểu đúng là:

\(E\subset B,E\subset D\)

21 tháng 6 2024

Thuế VAT mà bác Minh phải trả khi mua chiếc điện thoại là:

\(10\%\cdot7990000=799000\left(đ\right)\) 

Số tiền mà bác Minh phải trả khi mua chiếc điện thoại là:

\(7990000+799000=8789000\left(đ\right)\) 

20 tháng 6 2024

$20+(4^2-4)-2$

$=(20-2)+(16-4)$

$=18+12=30$

20 tháng 6 2024

30

2B:

a: \(A=\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{256}}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

\(=\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{2\left(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}\right)}\cdot\dfrac{\dfrac{3}{4}\left(1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}\right)}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

\(=\dfrac{1}{2}\cdot\dfrac{3}{4}+\dfrac{5}{8}=\dfrac{3}{8}+\dfrac{5}{8}=\dfrac{8}{8}=1\)

b: \(B=\dfrac{0,125-\dfrac{1}{5}+\dfrac{1}{7}}{0,375-\dfrac{3}{5}+\dfrac{3}{7}}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-0,2}{\dfrac{3}{4}+0,5-\dfrac{3}{10}}\)

\(=\dfrac{\dfrac{1}{8}-\dfrac{1}{5}+\dfrac{1}{7}}{3\left(\dfrac{1}{8}-\dfrac{1}{5}+\dfrac{1}{7}\right)}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{6}}{\dfrac{3}{2}\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{6}\right)}=\dfrac{1}{3}+\dfrac{2}{3}=1\)

20 tháng 6 2024

a) \(A=\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{256}}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

\(=\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{2\left(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}\right)}\cdot\dfrac{\dfrac{3}{4}\left(1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}\right)}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

\(=\dfrac{1}{2}\cdot\dfrac{3}{4}+\dfrac{5}{8}\)

\(=\dfrac{3}{8}+\dfrac{5}{8}=1\)

b) \(B=\dfrac{0,125-\dfrac{1}{5}+\dfrac{1}{7}}{0,375-\dfrac{3}{5}+\dfrac{3}{7}}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-0,2}{\dfrac{3}{4}+0,5-\dfrac{3}{10}}\)

\(=\dfrac{\dfrac{1}{8}-\dfrac{1}{5}+\dfrac{1}{7}}{\dfrac{3}{8}-\dfrac{3}{5}+\dfrac{3}{7}}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}{\dfrac{3}{4}+\dfrac{1}{2}-\dfrac{3}{10}}\)

\(=\dfrac{\dfrac{1}{8}-\dfrac{1}{5}+\dfrac{1}{7}}{3\left(\dfrac{1}{8}-\dfrac{1}{5}+\dfrac{1}{7}\right)}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}{\dfrac{3}{2}\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}\right)}\)

\(=\dfrac{1}{3}+\dfrac{1}{\dfrac{3}{2}}=\dfrac{1}{3}+\dfrac{2}{3}=1\)

20 tháng 6 2024

\(B=\left(1-\dfrac{1}{2^2}\right)\cdot\left(1-\dfrac{1}{3^2}\right)\cdot\left(1-\dfrac{1}{4^2}\right)\cdot...\cdot\left(1-\dfrac{1}{2024^2}\right)\)

\(=\dfrac{2^2-1}{2^2}\cdot\dfrac{3^2-1}{3^2}\cdot\dfrac{4^2-1}{4^2}\cdot...\cdot\dfrac{2024^2-1}{2024^2}\)

Ta có CT: \(a^2-1=\left(a+1\right)\left(b+1\right)\)

\(B=\dfrac{\left(2+1\right)\left(2-1\right)}{2^2}\cdot\dfrac{\left(3+1\right)\left(3-1\right)}{3^2}\cdot\dfrac{\left(4+1\right)\left(4-1\right)}{4^2}...\cdot\dfrac{\left(2024+1\right)\left(2024-1\right)}{2024^2}\) 

\(=\dfrac{1\cdot3}{2^2}\cdot\dfrac{4\cdot2}{3^2}\cdot\dfrac{5\cdot3}{4^2}\cdot...\cdot\dfrac{2025\cdot2023}{2024^2}\)

\(=\dfrac{1\cdot2\cdot3^2\cdot...\cdot2023^2\cdot2024\cdot2025}{2^2\cdot3^2\cdot...\cdot2024^2}\)

\(=\dfrac{2025}{2\cdot2024}=\dfrac{2025}{4048}>\dfrac{2024}{4048}=\dfrac{1}{2}\)

Vậy: ...  

20 tháng 6 2024

Ta có : 

\(B=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right).....\left(1-\dfrac{1}{2024^2}\right)\)

\(=\dfrac{2^2-1}{2^2}.\dfrac{3^2-1}{3^2}.\dfrac{4^2-1}{4^2}.....\dfrac{2024^2-1}{2024^2}\)

\(=\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}.....\dfrac{2023.2025}{2024^2}\)

\(=\dfrac{1.2.3.....2023}{2.3.4.....2024}.\dfrac{3.4.5.....2025}{2.3.4.....2024}\)

\(=\dfrac{1}{2024}.\dfrac{2025}{2}=\dfrac{2025}{4048}>\dfrac{1}{2}\)

Vậy \(B>\dfrac{1}{2}\)