\(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\)
a)Tìm ĐKXĐ và rút gọn
b) Tìm giá trị của x để A>0
c)Tìm giá trị của A trong trường hợp /x-7/=4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3x+5\right)\left(x+2\right)=x^2-5x\)
\(\Leftrightarrow3x^2+6x+5x+10=x^2-5x\)
\(\Leftrightarrow3x^2+11x+10-x^2+5x=0\)
\(\Leftrightarrow2x^2+16x+10=0\)
\(\Leftrightarrow2\left(x^2+8x+5\ne0\right)=0\)
Vậy phương trình vô nghiệm
\(2x\left(3x-1\right)=3x-1\)
\(\Leftrightarrow2x=\frac{3x-1}{3x-1}\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
\(2x\left(3x-1\right)=3x-1\)
\(\Leftrightarrow2x\left(3x-1\right)-\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(2x-1\right)=0\Leftrightarrow x=\frac{1}{3};\frac{1}{2}\)
x6 - 2x4 + x3 + x2 - x
= x6 - x4 - x4 + x3 + x2 - x
= ( x6 - x4 ) - ( x4 - x2 ) + ( x3 - x )
= x3( x3 - x ) - x( x3 - x ) + ( x3 - x )
= ( x3 - x )( x3 - x + 1 )
= 6.( 6 + 1 ) = 42
ta có x=2 vì 23-2=6
=>26-2.24+23+22-2
=64-2.16+8+4-2
=64-32+8+4-2
=32+8+4-2
=40+4-2
=44-2
=42
a3 + b3 + c3 = 3abc
⇒ a3 + b3 + c3 - 3abc = 0
⇒ ( a3 + b3 ) + c3 - 3abc = 0
⇒ ( a + b )3 - 3ab( a + b ) + c3 - 3abc = 0
⇒ [ ( a + b )3 + c3 ] - [ 3ab( a + b ) + 3abc ] = 0
⇒ ( a + b + c )[ ( a + b )2 - ( a + b ).c + c2 ] - 3ab( a + b + c ) = 0
⇒ ( a + b + c )( a2 + b2 + c2 - ab - bc - ac ) = 0
⇒ \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{cases}}\)
Vì a,b,c > 0 ⇒ a + b + c > 0 ⇒ a + b + c = 0 không xảy ra
Xét a2 + b2 + c2 - ab - bc - ac = 0
⇒ 2( a2 + b2 + c2 - ab - bc - ac ) = 2.0
⇒ 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac = 0
⇒ ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( a2 - ac + c2 ) = 0
⇒ ( a - b )2 + ( b - c )2 + ( a - c )2 = 0
Vì \(\hept{\begin{cases}\left(a-b\right)^2\\\left(b-c\right)^2\\\left(a-c\right)^2\end{cases}}\ge0\forall a,b,c\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\forall a,b,c\)
Dấu "=" xảy ra khi a = b = c
Khi đó : a - b + 1/29 = a - a + 1/29 = 1/29
Ta có: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
Vì \(a,b,c>0\)nên \(a+b+c>0\)suy ra \(a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow a=b=c\)
Ta có: \(6x^2-x-2=0\)
\(\Leftrightarrow6x^2-4x+3x-2=0\)
\(\Leftrightarrow2x.\left(3x-2\right)+\left(3x-2\right)=0\)
\(\Leftrightarrow\left(2x+1\right).\left(3x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\3x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{2}{3}\end{cases}}\)
6x2 - 2 - x = 0
=> 6x2 + 3x - 4x - 2 = 0
=> 3x(2x + 1) - 2(2x + 1) = 0
=> (3x - 2)(2x + 1) = 0
=> \(\orbr{\begin{cases}3x-2=0\\2x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}3x=2\\2x=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-\frac{1}{2}\end{cases}}\)
( x - 1 )( x2 + 5x - 2 ) - ( x3 - 1 ) = 0
<=> ( x - 1 )( x2 + 5x - 2 ) - ( x - 1 )( x2 + x + 1 ) = 0
<=> ( x - 1 )( x2 + 5x - 2 - x2 - x - 1 ) = 0
<=> ( x - 1 )( 4x - 3 ) = 0
<=> x - 1 = 0 hoặc 4x - 3 = 0
<=> x = 1 hoặc x = 3/4
Vậy pt có tập nghiệm S = { 1 ; 3/4 }
\(\left(x-1\right)\left(x^2+5x-2\right)-\left(x^3-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+5x-2\right)-\left(x-1\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+5x-2-x^2-x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(4x-3\right)=0\Leftrightarrow x=1;\frac{3}{4}\)
a, ĐKXĐ : \(\hept{\begin{cases}2-x\ne0\\x^2-4\ne0\\2+x\ne0\end{cases}}\)hoặc \(2x^2-x^3\ne0\)hay \(x\ne\pm2;0\)
\(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\)
\(=\left(-\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}-\frac{4x^2}{\left(x-2\right)\left(x+2\right)}+\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}\right):\left(\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\right)\)
\(=\frac{-x^2-2x-1-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}:\frac{x-3}{x\left(2-x\right)}\)
\(=\frac{-4x^2-6x+3}{\left(x-2\right)\left(x+2\right)}.\frac{-x\left(x-2\right)}{x-3}=\frac{\left(-4x^2-6x+3\right)\left(-x\right)}{\left(x+2\right)\left(x-3\right)}=\frac{4x^3+6x^2-3x}{\left(x+2\right)\left(x-3\right)}\)
b, Ta có : A > 0 hay \(\frac{4x^3+6x^2-3x}{\left(x+2\right)\left(x-3\right)}>0\)
\(\Leftrightarrow x\left(4x^2+6x-3\right)>0\)
\(\Leftrightarrow4x^2+6x-3>0\) bạn xem lại bài mình có chỗ nào sai ko nhé !!!
c, Ta có : \(\left|x-7\right|=4\Rightarrow\orbr{\begin{cases}x-7=4\\x-7=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=11\\x=3\end{cases}}}\)
TH1 : Thay x = 11 vào phân thức trên : ...
TH2 : Thay x = 3 vào phân thức trên : .... tự làm