Thực hiện phép nhân 2x ^ 2 (x ^ 2 + 5x - 2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
b: ΔBAD=ΔBHD
=>DA=DH
mà DH<DC(ΔDHC vuông tại H)
nên DA<DC
c: Xét ΔBKC có
KH,CA là các đường cao
KH cắt CA tại D
Do đó: D là trực tâm của ΔBKC
=>BD\(\perp\)KC
Xét ΔDAK vuông tại A và ΔDHC vuông tại H có
DA=DH
\(\widehat{ADK}=\widehat{HDC}\)(hai góc đối đỉnh)
Do đó: ΔDAK=ΔDHC
=>DK=DC
=>ΔDKC cân tại D
a: Xét ΔBAD vuông tại A và ΔBKD vuông tại K có
BD chung
\(\widehat{ABD}=\widehat{KBD}\)
Do đó: ΔBAD=ΔBKD
=>DA=DK
b: Xét ΔDAH vuông tại A và ΔDKC vuông tại K có
DA=DK
\(\widehat{ADH}=\widehat{KDC}\)(hai góc đối đỉnh)
Do đó: ΔDAH=ΔDKC
Gọi số hộp bánh loại 1, loại 2, loại 3 cô Mai mua lần lượt là a(hộp),b(hộp),c(hộp)
(ĐIều kiện:\(a,b,c\in Z^+\))
Loại 1 giá 60k/hộp; loại 2 có giá là 40k/hộp và loại 3 có giá là 30k/hộp và số tiền cô Mai mua 3 loại bánh là bằng nhau nên ta có:
60000a=40000b=30000c
=>6a=4b=3c
=>\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)
Tổng số hộp bánh là 54 hộp nên a+b+c=54
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+b+c}{2+3+4}=\dfrac{54}{9}=6\)
=>\(a=6\cdot2=12;b=3\cdot6=18;c=4\cdot6=24\)
Vậy: cô Mai mua 12 hộp bánh loại 1; 18 hộp bánh loại 2; 24 hộp bánh loại 3
a: Xét ΔADB vuông tại D và ΔADE vuông tại D có
AD chung
DB=DE
Do đó: ΔADB=ΔADE
=>AB=AE
=>ΔABE cân tại A
b: Gọi H là giao điểm của AD và CK
Xét ΔAHC có
AK,CD là các đường cao
AK cắt CD tại E
Do đó: E là trực tâm của ΔAHC
=>HE\(\perp\)AC
mà EF\(\perp\)AC
nên H,E,F thẳng hàng
=>AD,EF,CK đồng quy
a: Xét ΔAHD vuông tại H và ΔAED vuông tại E có
AD chung
AH=AE
Do đó: ΔAHD=ΔAED
b: ΔAHD=ΔAED
=>DH=DE
Xét ΔDHK vuông tại H và ΔDEC vuông tại E có
DH=DE
\(\widehat{HDK}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDHK=ΔDEC
=>DK=DC
=>ΔDKC cân tại D
c: Ta có: ΔDHK=ΔDEC
=>HK=EC
Ta có: AH+HK=AK
AE+EC=AC
mà AH=AE và HK=EC
nên AK=AC
=>A nằm trên đường trung trực của KC(1)
Ta có: DK=DC
=>D nằm trên đường trung trực của CK(2)
Ta có: MK=MC
=>M nằm trên đường trung trực của CK(3)
Từ (1),(2),(3) suy ra A,D,M thẳng hàng
a: Xét ΔCAB vuông tại A và ΔCAD vuông tại A có
CA chung
AB=AD
Do đó: ΔCAB=ΔCAD
=>CB=CD
=>ΔBCD cân tại C
b: Xét ΔMCB và ΔMDE có
\(\widehat{MCB}=\widehat{MDE}\)(BC//DE)
MC=MD
\(\widehat{CMB}=\widehat{DME}\)(hai góc đối đỉnh)
Do đó: ΔMCB=ΔMDE
=>CB=DE
Xét ΔEDB có ED+DB>BE
mà ED=CB
nên BC+BD>BE
\(2x^2\left(x^2+5x-2\right)\)
\(=2x^2\cdot x^2+2x^2\cdot5x-2x^2\cdot2\)
\(=2x^4+10x^3-4x^2\)