K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2020

Dạ em mới chỉ biết tìm Min thôi ạ!

Ta có: \(a+b+c\ge3\sqrt[3]{abc}\)

\(\Leftrightarrow3\ge3\sqrt[3]{abc}\)

\(\Leftrightarrow\sqrt[3]{abc}\le1\)

\(\Rightarrow abc\le1\)

\(\Rightarrow P=a+b+c-\frac{1}{2}abc\)

\(\ge3-\frac{1}{2}.1=\frac{5}{2}\)

Dấu "=" xảy ra khi: \(a=b=c=1\)

Để em nghĩ tìm Max đã ạ!

3 tháng 7 2020

Ủa bài này có điều kiện không âm hay không?

21 tháng 6 2020

ĐK: \(\hept{\begin{cases}2-x^2\ge0\\x\ne0\end{cases}}\)

pt <=> \(\sqrt{2-x^2}+x=2x\sqrt{2-x^2}\)

Đặt: \(t=\sqrt{2-x^2}+x\ge0\Rightarrow t^2=2+2\sqrt{2-x^2}x\)

Ta có phương trình ẩn t: \(t=t^2-2\)

<=> t = 2 hoặc t  = -1 ( loại ) 

Với t = 2 ta có: \(2^2=2+2\sqrt{2-x^2}x\)

<=> \(x\sqrt{2-x^2}=1\Leftrightarrow\hept{\begin{cases}x\ge0\\x^2\left(2-x^2\right)=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge0\\x^4-2x^2+1=0\end{cases}}\Leftrightarrow x=1\) thỏa mãn đk 

Vậy x = 1.

21 tháng 6 2020

\(\hept{\begin{cases}ax+y=b\left(1\right)\\x^2-4y^2=1\left(2\right)\end{cases}}\)

Từ (1) <=> y = b - ax Thế vào (2) ta có phương trình: 

\(x^2-4\left(b-ax\right)^2=1\)

<=> \(4a^2x^2-8abx+4b^2+1-x^2=0\)

<=> \(\left(4a^2-1\right)x^2-8abx+4b^2+1=0\)(3)

+) TH1: \(4a^2-1=0\Leftrightarrow\orbr{\begin{cases}a=\frac{1}{2}\\a=-\frac{1}{2}\end{cases}}\)

  • Với a = 1/2 pt(3) trở thành: \(-4bx+b^2+1=0\)

phương trình trên có nghiệm <=> b \(\ne\)

=> a = 1/2 loại  

  • Với a = -1/2 pt(3) trở thành: \(4bx+b^2+1=0\)

phương trình trên có nghiệm <=> b \(\ne\)

=> a = -1/2 loại 

+) TH2: \(4a^2-1\ne0\Leftrightarrow\hept{\begin{cases}a\ne\frac{1}{2}\\a\ne-\frac{1}{2}\end{cases}}\)

pt (3) có nghiệm <=> \(\Delta'\ge0\)<=> \(\left(4ab\right)^2-\left(4a^2-1\right)\left(4b^2+1\right)\ge0\)

<=> \(-4a^2+4b^2+1\ge0\)

<=> \(4b^2+1\ge4a^2\)(4) 

mà \(4b^2+1\ge1\) với mọi b 

Hệ có nghiệm với mọi b <=> pt (3) có nghiệm với mọi b <=> (4) đúng với mọi b 

<=> \(4a^2\le1\Leftrightarrow-\frac{1}{2}\le a\le\frac{1}{2}\)

Đối chiếu đk: -1/2 < a < 1/2 

Kết luận:...