Biểu thức (𝑥.10−𝑥+3.𝑥−9.𝑥)(x.10−x+3.x−9.x) bằng biểu thức nào?
giúp mik nhau với
pls
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có I là trung điểm của AB
\(\Rightarrow IA=IB=\dfrac{1}{2}AB=\dfrac{1}{2}\cdot10=5\left(cm\right)\)
Mà:
\(IA=AM+IM\Rightarrow IM=IA-AM=5-3=2\left(cm\right)\)
\(IB=BN+IN\Rightarrow IN=IB-BN=5-3=2\left(cm\right)\)
\(IM=IN\left(=2cm\right)\Rightarrow\) I là trung điêm của MN
Ta có \(A=n^2\left(n^4-n^2+2n+2\right)\)
\(A=n^2\left(n^4+n^3-n^3-n^2+2n+2\right)\)
\(A=n^2\left(n^3\left(n+1\right)-n^2\left(n+1\right)+2\left(n+1\right)\right)\)
\(A=n^2\left(n+1\right)\left(n^3-n^2+2\right)\)
\(A=n^2\left(n+1\right)\left(n^3+n^2-2n^2+2\right)\)
\(A=n^2\left(n+1\right)\left(n^2\left(n+1\right)-2\left(n^2-1\right)\right)\)
\(A=n^2\left(n+1\right)\left(n^2\left(n+1\right)-2\left(n-1\right)\left(n+1\right)\right)\)
\(A=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)
Do đó, để A là số chính phương thì \(n^2-2n+2\) phải là số chính phương.
\(\Leftrightarrow n^2-2n+2=k^2\left(k\inℕ,k\ge1\right)\)
\(\Leftrightarrow k^2-n^2+2n-1=1\)
\(\Leftrightarrow k^2-\left(n-1\right)^2=1\)
\(\Leftrightarrow\left(k+n-1\right)\left(k-n+1\right)=1\)
\(\Leftrightarrow k+n-1=k-n+1=1\)
\(\Leftrightarrow k=n=1\)
Thử lại: Với \(n=1\), ta thấy \(A=1^2-1^4+2.1^3+2.1^2=4\) là SCP.
Vậy \(n=1\) là số tự nhiên duy nhất thỏa mãn đề bài.
\(\dfrac{2n+5}{n-4}=\dfrac{2n-8+13}{n-4}=\dfrac{2\left(n-4\right)+13}{n-4}=2+\dfrac{13}{n-4}\)
Để \(\dfrac{2n-5}{n-4}\) là số nguyên thì 13 ⋮ n - 4
⇒ n - 4 ∈ Ư(13) = {1; -1; 13; -13}
⇒ n ∈ { 5; 3; 17; -9}
Các giá trị nguyên của nnn thỏa mãn điều kiện là n=−9n = -9n=−9 và n=17n = 17n=17.
Lời giải:
Đặt $M=\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{c+a}$
Với $a,b,c$ nguyên dương thì:
$M=\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{c+a}> \frac{b}{a+b+c}+\frac{c}{b+c+a}+\frac{a}{c+a+b}=\frac{a+b+c}{a+b+c}=1(*)$
Lại có:
Xét hiệu $\frac{b}{a+b}-\frac{b+c}{a+b+c}=\frac{b(a+b+c)-(a+b)(b+c)}{(a+b)(a+b+c)}$
$=\frac{-b^2}{(a+b)(a+b+c)}<0$ với mọi $a,b,c$ nguyên dương.
$\Rightarrow \frac{b}{a+b}< \frac{b+c}{a+b+c}$
Tương tự:
$\frac{c}{b+c}< \frac{c+a}{b+c+a}$
$\frac{a}{c+a}< \frac{a+b}{c+a+b}$
$\Rightarrow M< \frac{b+c}{a+b+c}+\frac{c+a}{b+c+a}+\frac{a+b}{c+a+b}=\frac{2(a+b+c)}{a+b+c}=2(**)$
Từ $(*); (**)\Rightarrow 1< M< 2$
Do đó $M$ không phải số nguyên.
Bạn lưu ý lần sau gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
a\(\): \(K=1-5+5^2-5^3+...+5^{100}\)
=>\(5K=5-5^2+5^3-5^4+...+5^{101}\)
=>\(5K+K=5-5^2+5^3-5^4+...+5^{101}+1-5+5^2-5^3+...+5^{100}\)
=>\(6K=5^{101}+1\)
=>\(K=\dfrac{5^{101}+1}{6}\)
b: \(5^{101}\) chia 6 sẽ dư 5 bởi vì \(5^{101}+1⋮6\) và 1+5=6
\(A=\dfrac{1}{2\cdot6}+\dfrac{1}{3\cdot8}+...+\dfrac{1}{2023\cdot4048}\)
\(=\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+...+\dfrac{2}{4046\cdot4048}\)
\(=\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{4046}-\dfrac{1}{4048}\)
\(=\dfrac{1}{4}-\dfrac{1}{4048}=\dfrac{1012-1}{4048}=\dfrac{1011}{4048}\)
\(A=\dfrac{1}{2\cdot6}+\dfrac{1}{3\cdot8}+\dfrac{1}{4\cdot10}+...+\dfrac{1}{2023\cdot4048}\)
\(=\dfrac{1}{2}\cdot\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{2023\cdot2024}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2023}-\dfrac{1}{2024}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2024}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{1012-1}{2024}\)
\(=\dfrac{1011}{4048}\)
\(\left\{47-\left[736:\left(5-3\right)^4\right]\right\}.2021\)
\(=\left\{47-\left[736:2^4\right]\right\}.2021\)
\(=\left\{47-\left[736:16\right]\right\}.2021\)
\(=\left\{47-46\right\}.2021\)
\(=1.2021\)
\(=2021\)
\(\left\{47-\left[736:\left(5-3\right)^4\right]\right\}\cdot2021\)
\(=\left\{47-736:16\right\}\cdot2021\)
\(=\left(47-46\right)\cdot2021=2021\)
2(x-1)+3(x-2)=x-4
=> 2x-2+3x-6=x-4
=> 5x-8=x-4
=> 5x-x=8-4
=> 4x=4
=> x=4:4
=> x=1
Vậy: x=1
\(2\left(x-1\right)+3\left(x-2\right)=x-4\)
\(2x-2+3x-6=x-4\)
\(\left(2x+3x\right)-\left(2+6\right)=x-4\)
\(5x-8=x-4\)
\(5x-x=-4+8\)
\(4x=4\)
\(x=1\)
x.10 - x + 3.x - 9x
= (10 - 1 + 3 - 9)x
= 3x
3x