K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : \(x^2-2\left(m-1\right)x+2m-5=0\left(a=1;b=-2m+2;c=2m-5\right)\)

\(\Delta=\left(-2m+2\right)^2-4\left(2m-5\right)=-4m^2+4-8m+20=4m^2-8m+24\ge0\)

Để phương trình có 2 nghiệm thì : \(4m^2-8m+24\ge0\)

Áp dụng hệ thức Vi et ta có : \(x_1+x_2=2m-2;x_1x_2=2m-5\)

Theo bài ra ta có : \(x_1^2\left(1-x_2\right)+x_2^2\left(1-x_1^2\right)=-8\)

\(\Leftrightarrow x_1^2-x_1^2x_2+x_2^2-x_1^2x_2^2=-8\)

Tự lm nốt 

mk thấy trên mạng đề thế này : \(x_1^2\left(1-x_2^2\right)+x_2^2\left(1-x_1^2\right)=-8\)

Ta có : \(x^2-\left(m-1\right)x-m^2+m-2=0\left(a=1;b=-m+1;c=-m^2+m-2\right)\)

Áp dụng hệ thức Vi et : \(x_1+x_2=m-1;x_1x_2=-m^2+m-2\)

Theo bài ra ta có : \(x_1^3+x_2^3>0\)

\(\Leftrightarrow\left(x_1+x_2\right)^3>0\)Thay vào ta đc : \(\Leftrightarrow\left(m-1\right)^3>0\)

Khi đó : \(m-1>0\Leftrightarrow m>1\)

Ta có : \(x^2+\left(m^2+1\right)x+m=2\)

\(\Leftrightarrow x^2+\left(m^2+1\right)x+m-2=0\left(a=1;b=m^2+1;c=m-2\right)\)

a, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)hay 

\(\left(m^2+1\right)^2-4\left(-2\right)=m^4+1+8=m^4+9>0\) (hoàn toàn đúng, ez =)) 

b, Áp dụng hệ thức Vi et ta có : \(x_1+x_2=-m^2-1;x_1x_2=m-2\)

Đặt \(x_1;x_2\)lần lượt là \(a;b\)( cho viết dễ hơn )

Theo bài ra ta có \(\frac{2a-1}{b}+\frac{2b-1}{a}=ab+\frac{55}{ab}\)

\(\Leftrightarrow\frac{2a^2-a}{ab}+\frac{2b^2-b}{ab}=\frac{\left(ab\right)^2}{ab}+\frac{55}{ab}\)

Khử mẫu \(2a^2-a+2b^2-b=\left(ab\right)^2+55\)

Tự lm nốt vì I chưa thuộc hđt mà lm )): 

7 tháng 7 2020

a,\(x^2+\left(m^2+1\right)x+m=2\)

\(< =>x^2+\left(m^2+1\right)x+m-2=0\)

Xét \(\Delta=\left(m^2+1\right)^2-4.\left(m-2\right)=1+m^4-4m+8\)(đề sai à bạn)

b,Để phương trình có 2 nghiệm phân biệt : \(\Delta>0\)

\(< =>\left(m^2+1\right)^2-4\left(m-2\right)>0\)

\(< =>4m-8< m^4+1\)

\(< =>4m-9< m^4\)

\(< =>m>\sqrt[4]{4m-9}\)

Ta có : \(\frac{2x_1-1}{x_2}+\frac{2x_2-1}{x_1}=x_1x_2+\frac{55}{x_1x_2}\)

\(< =>\frac{2x_1^2-x_1+2x_2^2-x_2}{x_1x_2}=\frac{\left(x_1x_2\right)^2+55}{x_1x_2}\)

\(< =>2\left[\left(x_1+x_2\right)\left(x_1-x_2\right)\right]-\left(x_1+x_2\right)=\left(x_1x_2\right)^2+55\)

đến đây dễ rồi ha 

6 tháng 7 2020

 Gọi số khẩu trang công ti dự định may mỗi ngày là \(x\)(khẩu trang , \(x\in N^∗,x>0\))

       số khẩu trang công ti thực tế may mỗi ngày là \(x+100\)(khảu trang)

Thời gian công ti dự dịnh hoàn thành công việc là \(\frac{6000}{x}\)(ngày)

Thời gian công ti thực tế hoàn thành công việc là \(\frac{6000}{x+100}\)(ngày)

Vì thời gian thực tế hoàn thành sớm hơn 2 ngày so với dự định, ta có phương trình:

\(\frac{6000}{x}-\frac{6000}{x+100}=2\)

\(\Leftrightarrow\frac{6000.\left(x+100\right)}{x.\left(x+100\right)}-\frac{6000x}{x.\left(x+100\right)}=\frac{2x.\left(x+100\right)}{x.\left(x+100\right)}\)

\(\Leftrightarrow6000x+600000-6000x=2x^2+200x\)

\(\Leftrightarrow2x^2+200x-600000=0\)

\(\Leftrightarrow x^2+100x-300000=0\)

\(\Leftrightarrow x^2-500x+600x-300000=0\)

\(\Leftrightarrow x.\left(x-500\right)+600.\left(x-500\right)=0\)

\(\Leftrightarrow\left(x-500\right).\left(x+600\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-500=0\\x+600=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=500\left(TM\right)\\x=-600\left(L\right)\end{cases}}}\)

Vậy số khẩu trang công ti dự định may mỗi ngày là \(500\)khẩu trang 

6 tháng 7 2020

Gọi x là khẩu trang cty may đc mỗi ngày theo dự định \(\left(x\inℕ^∗\right)\)

Sau khi bổ sung thêm công nhân thì mỗi ngày may đc: \(x+100\) ( khẩu trang)

Số ngày để may khẩu trang theo dự định là:\(\frac{6000}{x}\)(ngày)

Số ngày để mày khẩu trang khi bổ sung thêm công nhân là:\(\frac{6000}{x+100}\)(ngày)

Vì hoàn thành sớm hơn 2 ngày so với dự định nên ta có pt:

\(\frac{6000}{x}-\frac{6000}{x+100}=2\)

\(\Rightarrow6000\left(x+100\right)-6000x=2x\left(x+100\right)\)

\(\Rightarrow2x^2+200x-600000=0\)

\(\Rightarrow\orbr{\begin{cases}x=500\left(TM\right)\\x=-600\left(L\right)\end{cases}}\)

Vậy dự đinh mỗi ngày cty mày đc 500 chiếc khẩu trang

Cho tớ sửa đề làm cho nó dễ nhé == chứ x2^2 mà x1 thôi thì tớ ko có bt lm 

Ta có : \(x^2+\left(-m+2\right)x-6=0\left(a=1;b=-m+2;c=-6\right)\)

Cái chỗ này là mk đổi dấu cho thuận một tí ko ko xét b đc )): lại 1 bước đi vạn dặm đau thì toang =)) 

\(\Delta=\left(-m+2\right)^2-4\left(-6\right)=m^2+4+24=m^2+28\) Vậy : Pt luôn có 2 nghiệm \(\forall x\)

Áp dụng hệ thức Vi et ta có : \(x_1+x_2=m-2;x_1x_2=-6\)

Theo bài ra ta có : \(x_2^2-x_1x_2+\left(m-2\right)x_1^2=16\)

\(\Leftrightarrow\left(x_1^2x_2^2\right)-x_1x_2+\left(m-2\right)=16\)

\(\Leftrightarrow\left(x_1x_2\right)^2-x_1x_2+m-2=16\)

\(\Leftrightarrow\left(-6\right)^2+6+m-2=16\)

\(\Leftrightarrow36+6+m-2=16\Leftrightarrow40+m-16=0\Leftrightarrow m=-24\)

7 tháng 7 2020

Bài 2 :

a) \(ĐKXĐ:\hept{\begin{cases}x;y>0\\x\ne y\end{cases}}\)

b) \(A=\left(\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x}-\sqrt{y}}\right):\frac{x\sqrt{xy}+y\sqrt{xy}}{\sqrt{xy}\left(y-x\right)}\)

\(\Leftrightarrow A=\frac{x-\sqrt{xy}+y-\sqrt{xy}}{\sqrt{x}-\sqrt{y}}:\frac{x+y}{y-x}\)

\(\Leftrightarrow A=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{x}-\sqrt{y}}\cdot\frac{y-x}{x+y}\)

\(\Leftrightarrow A=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(y-x\right)}{x+y}\)

c) Thay \(x=4+2\sqrt{3},y=4-2\sqrt{3}\)vào A, ta được :

   \(A=\frac{\left(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\right)\left(4-2\sqrt{3}-4-2\sqrt{3}\right)}{4+2\sqrt{3}+4-2\sqrt{3}}\)

\(\Leftrightarrow A=\frac{\left(\sqrt{\left(1+\sqrt{3}\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}\right).\left(-4\sqrt{3}\right)}{8}\)

\(\Leftrightarrow A=\frac{\left(1+\sqrt{3}-\sqrt{3}+1\right).\left(-4\sqrt{3}\right)}{8}=\frac{-8\sqrt{3}}{8}=-\sqrt{3}\)

Vậy ....

7 tháng 7 2020

Bài 1:

\(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}-\sqrt{2}}=\frac{2\sqrt{2\cdot4}-\sqrt{3\cdot4}}{\sqrt{2\cdot9}-\sqrt{16\cdot3}}-\frac{\sqrt{5}+\sqrt{9\cdot3}}{\sqrt{30}-\sqrt{2}}\)

\(=\frac{4\sqrt{2}-2\sqrt{3}}{3\sqrt{2}-4\sqrt{3}}-\frac{\sqrt{5}+3\sqrt{3}}{\sqrt{30}-\sqrt{2}}=\frac{\left(4\sqrt{2}-2\sqrt{3}\right)\left(\sqrt{30}-\sqrt{2}\right)-\left(\sqrt{5}+3\sqrt{3}\right)\left(3\sqrt{2}-4\sqrt{3}\right)}{\left(3\sqrt{2}-4\sqrt{3}\right)\left(\sqrt{30}-\sqrt{2}\right)}\)

\(=\frac{4\sqrt{60}-8-2\sqrt{90}+2\sqrt{6}-3\sqrt{10}+4\sqrt{15}-9\sqrt{6}+36}{3\sqrt{60}-6-4\sqrt{90}+4\sqrt{6}}\)

\(=\frac{8\sqrt{15}-8-6\sqrt{10}+2\sqrt{6}-3\sqrt{10}+4\sqrt{15}-9\sqrt{6}+36}{6\sqrt{15}-6-12\sqrt{10}+4\sqrt{6}}\)

\(=\frac{12\sqrt{15}-2\sqrt{10}-7\sqrt{6}+28}{6\sqrt{15}-12\sqrt{10}+4\sqrt{6}-6}\)

7 tháng 7 2020

a

Để \(\sqrt{\frac{-2\sqrt{6+\sqrt{23}}}{-x+5}}\) được xác định thì \(-x+5\ne0;-x+5< 0\)

\(\Leftrightarrow x\ne5;x>5\)

b

Để \(\sqrt{49x^2-34x+4}=\sqrt{\left(x-\frac{17+\sqrt{93}}{49}\right)\left(x-\frac{\sqrt{17}-\sqrt{93}}{49}\right)}\) đươc xác định thì:

\(49x^2-34x+4\ge0\Leftrightarrow\frac{\sqrt{17}-\sqrt{93}}{49}\le x\le\frac{\sqrt{19}+\sqrt{93}}{49}\)