K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3

Thời gian xe máy đi hết quãng đường AB:

8 giờ 50 phút - 7 giờ 20 phút = 1 giờ 30 phút = 1,5 giờ

Vận tốc xe máy:

67,5 : 1,5 = 45 (km/giờ)

Thời gian xe đạp đi hết quãng đường AB:

1 giờ 30 phút + 4 giờ 30 phút = 6 giờ

Vận tốc xe đạp:

67,5 : 6 = 11,25 (km/giờ)

26 tháng 3

Thời gian xe máy đi hết quãng đường AB:

8 giờ - 6 giờ 30 phút = 1 giờ 30 phút = 1,5 giờ

Vận tốc xe máy:

58,5 : 1,5 = 39 (km/giờ)

Thời gian xe đạp đi hết quãng đường AB:

1 giờ 30 phút + 2 giờ 15 phút = 3 giờ 45 phút = 3,75 giờ

Vận tốc xe đạp:

58,5 : 3,75 = 15,6 (km/giờ)

a: Vì AB+BC=AC

nên B nằm giữa A và C

b: M nằm giữa B và C

=>MC+MB=BC

=>MB+1=4

=>MB=3(cm)

Vì BA và BC là hai tia đối nhau

nên BA và BM là hai tia đối nhau

=>B nằm giữa A và M

mà BA=BM(=3cm)

nên B là trung điểm của AM

=>\(AM=2\cdot AB=6\left(cm\right)\)

\(A=\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\left(\dfrac{1}{99}+1\right)\)

\(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{100}{99}\)

\(=\dfrac{100}{2}=50\)

\(B=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\left(\dfrac{1}{100}-1\right)\)

\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-99}{100}\)

\(=-\dfrac{1}{100}\)

\(C=\dfrac{3}{2^2}\cdot\dfrac{8}{3^2}\cdot...\cdot\dfrac{899}{30^2}\)

\(=\dfrac{1\cdot3}{2\cdot2}\cdot\dfrac{2\cdot4}{3\cdot3}\cdot...\cdot\dfrac{29\cdot31}{30\cdot30}\)

\(=\dfrac{1\cdot2\cdot3\cdot...\cdot29}{2\cdot3\cdot...\cdot30}\cdot\dfrac{3\cdot4\cdot...\cdot31}{2\cdot3\cdot...\cdot30}\)

\(=\dfrac{1}{30}\cdot\dfrac{31}{2}=\dfrac{31}{60}\)

\(D=\dfrac{3}{1\cdot2}+\dfrac{3}{2\cdot3}+...+\dfrac{3}{99\cdot100}\)

\(=3\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\right)\)

\(=3\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(=3\left(1-\dfrac{1}{100}\right)=3\cdot\dfrac{99}{100}=\dfrac{297}{100}\)

\(E=\dfrac{\dfrac{1}{9}-\dfrac{5}{6}-4}{\dfrac{7}{12}-\dfrac{1}{36}-10}=\dfrac{2-15-72}{18}:\dfrac{21-1-360}{36}\)

\(=\dfrac{-85}{18}\cdot\dfrac{36}{-340}=\dfrac{36}{18}\cdot\dfrac{85}{340}=\dfrac{2}{4}=\dfrac{1}{2}\)

26 tháng 3

Số bị chia bằng:

Thương nhân số chia + 8

-9,12>-9,7 nha 

26 tháng 3

Vì 9,12 < 9,7

Nên 9,12 x (-1) > 9,7 x (-1)

       -9,12 > - 9,7

Khi nhân cả hai vế của bất đẳng thức với cùng một số âm thì bất đẳng thức đổi chiều.

a: Xét (O) có

ΔCMD nội tiếp

CD là đường kính

Do đó: ΔCMD vuông tại M

Xét tứ giác NODM có \(\widehat{NOD}+\widehat{NMD}=90^0+90^0=180^0\)

nên NODM là tứ giác nội tiếp

b: Xét (O) có CD,AB là các đường kính và CD\(\perp\)AB

nên \(sđ\stackrel\frown{AC}=sđ\stackrel\frown{CB}=sđ\stackrel\frown{AD}=sđ\stackrel\frown{BD}=90^0\)

Xét (O) có \(\widehat{MNA}\) là góc có đỉnh trong đường tròn chắn hai cung AM,CB

nên \(\widehat{MNA}=\dfrac{1}{2}\left(sđ\stackrel\frown{AM}+sđ\stackrel\frown{CB}\right)\)

=>\(\widehat{MNA}=\dfrac{1}{2}\cdot\left(sđ\stackrel\frown{AM}+sđ\stackrel\frown{AC}\right)=\dfrac{1}{2}\cdot sđ\stackrel\frown{MC}\left(1\right)\)

Xét (O) có

\(\widehat{MBC}\) là góc nội tiếp chắn cung MC

nên \(\widehat{MBC}=\dfrac{1}{2}\cdot sđ\stackrel\frown{MC}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{MNA}=\widehat{MBC}\)

26 tháng 3

Ta có: \(x+y+z=1\Rightarrow z=1-x-y\)

Khi đó: \(xy+z=xy+1-x-y\)

\(=x\left(y-1\right)-\left(y-1\right)=\left(x-1\right)\left(y-1\right)\)       (1)

Tương tự, ta cũng có: \(\left\{{}\begin{matrix}yz+x=\left(y-1\right)\left(z-1\right)\\zx+y=\left(z-1\right)\left(x-1\right)\end{matrix}\right.\)  (2)

Lại có: \(x+y+z=1\Rightarrow\left\{{}\begin{matrix}x+y=1-z\\y+z=1-x\\z+x=1-y\end{matrix}\right.\)    (3)

Thay (1); (2) và (3) vào \(T\), ta được:

\(T=\dfrac{\left[\left(x-1\right)\left(y-1\right)\right]\left[\left(y-1\right)\left(z-1\right)\right]\left[\left(z-1\right)\left(x-1\right)\right]}{\left(1-z\right)^2\left(1-x\right)^2\left(1-y\right)^2}\)

\(=\dfrac{\left(x-1\right)^2\left(y-1\right)^2\left(z-1\right)^2}{\left(x-1\right)^2\left(y-1\right)^2\left(z-1\right)^2}=1\)

Vậy \(T=1\).

a: Xét ΔHBA vuông tại H và ΔHCB vuông tại H có

\(\widehat{HBA}=\widehat{HCB}\left(=90^0-\widehat{HAB}\right)\)

Do đó: ΔHBA~ΔHCB

=>\(\dfrac{HB}{HC}=\dfrac{HA}{HB}\)

=>\(HB^2=HA\cdot HC\)

b: Ta có: HM\(\perp\)BA

BC\(\perp\)BA

Do đó: HM//BC

Xét ΔAMH vuông tại M và ΔHNC vuông tại N có

\(\widehat{MHA}=\widehat{NCH}\)(hai góc đồng vị, MH//BC)

Do đó: ΔAMH~ΔHNC

c: Xét tứ giác BMHN có \(\widehat{BMH}=\widehat{BNH}=\widehat{MBN}=90^0\)

nên BMHN là hình chữ nhật

=>\(\widehat{NMH}=\widehat{NBH}\)

mà \(\widehat{NBH}=\widehat{BAC}\left(=90^0-\widehat{C}\right)\)

nên \(\widehat{NMH}=\widehat{BAC}\)

Ta có: BMHN là hình chữ nhật

=>\(\widehat{MNH}=\widehat{MBH}\)

mà \(\widehat{MBH}=\widehat{C}\left(=90^0-\widehat{A}\right)\)

nên \(\widehat{MNH}=\widehat{C}\)

Ta có: ΔCHN vuông tại N

mà NI là đường trung tuyến

nên IN=IH

=>ΔINH cân tại I

=>\(\widehat{INH}=\widehat{IHN}\)

mà \(\widehat{IHN}=\widehat{A}\)(hai góc đồng vị, NH//AB)

nên \(\widehat{INH}=\widehat{A}\)

Ta có: ΔHMA vuông tại M

mà MK là đường trung tuyến

nên KH=KM

=>ΔKHM cân tại K

=>\(\widehat{KMH}=\widehat{KHM}\)

mà \(\widehat{KHM}=\widehat{C}\)(hai góc đồng vị, MH//BC)

nên \(\widehat{KMH}=\widehat{C}\)

\(\widehat{INM}=\widehat{INH}+\widehat{MNH}=\widehat{C}+\widehat{A}=90^0\)

=>IN\(\perp\)NM(1)

\(\widehat{KMN}=\widehat{KMH}+\widehat{NMH}=\widehat{C}+\widehat{A}=90^0\)

=>NM\(\perp\)MK(2)

Từ (1),(2) suy ra MK//NI

Xét tứ giác KMNI có MK//NI

nên KMNI là hình thang

Hình thang KMNI có IN\(\perp\)NM

nên KMNI là hình thang vuông

a: Xét ΔABC có DE//BC

nên \(\dfrac{DE}{BC}=\dfrac{AD}{AB}\)

=>\(\dfrac{DE}{8}=\dfrac{2}{5}\)

=>\(DE=8\cdot\dfrac{2}{5}=3,2\left(cm\right)\)

b: Xét tứ giác BDFC có

BD//FC

DF//BC

Do đó: BDFC là hình bình hành

=>DF=BC=8cm

DE+EF=DF

=>EF+3,2=8

=>EF=4,8(cm)

Xét ΔIFE và ΔIBC có

\(\widehat{IFE}=\widehat{IBC}\)(hai góc so le trong, FE//BC)

\(\widehat{FIE}=\widehat{BIC}\)(hai góc đối đỉnh)

Do đó: ΔIFE~ΔIBC

=>\(\dfrac{IF}{IB}=\dfrac{IE}{IC}=\dfrac{FE}{BC}\)

=>\(\dfrac{IF}{IB}=\dfrac{4.8}{8}=\dfrac{3}{5}\)

c: Xét ΔIFC và ΔIBA có

\(\widehat{IFC}=\widehat{IBA}\)(hai góc so le trong, FC//BA)

\(\widehat{FIC}=\widehat{BIA}\)(hai góc đối đỉnh)

Do đó: ΔIFC~ΔIBA

=>\(\dfrac{IF}{IB}=\dfrac{IC}{IA}\)

=>\(\dfrac{IC}{IA}=\dfrac{IE}{IC}\)

=>\(IC^2=IE\cdot IA\)