ĐƯỜNG TỪ A ĐẾN B DÀI 67,5KM.LÚC 7 GIỜ 20 PHÚT MỘT XE MÁY VÀ MỘT XE ĐẠP CÙNG KHỞI HÀNH TỪ A TỚI B.ĐẾN 8 GIỜ 50 PHÚT THÌ XE MÁY TỚI B.BIẾT XE ĐẠP TỚI B SAU XE MÁY 4 GỜI 30 PHÚT .TÍNH VẬN TỐC MỖI XE.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thời gian xe máy đi hết quãng đường AB:
8 giờ - 6 giờ 30 phút = 1 giờ 30 phút = 1,5 giờ
Vận tốc xe máy:
58,5 : 1,5 = 39 (km/giờ)
Thời gian xe đạp đi hết quãng đường AB:
1 giờ 30 phút + 2 giờ 15 phút = 3 giờ 45 phút = 3,75 giờ
Vận tốc xe đạp:
58,5 : 3,75 = 15,6 (km/giờ)
a: Vì AB+BC=AC
nên B nằm giữa A và C
b: M nằm giữa B và C
=>MC+MB=BC
=>MB+1=4
=>MB=3(cm)
Vì BA và BC là hai tia đối nhau
nên BA và BM là hai tia đối nhau
=>B nằm giữa A và M
mà BA=BM(=3cm)
nên B là trung điểm của AM
=>\(AM=2\cdot AB=6\left(cm\right)\)
\(A=\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\left(\dfrac{1}{99}+1\right)\)
\(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{100}{99}\)
\(=\dfrac{100}{2}=50\)
\(B=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\left(\dfrac{1}{100}-1\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-99}{100}\)
\(=-\dfrac{1}{100}\)
\(C=\dfrac{3}{2^2}\cdot\dfrac{8}{3^2}\cdot...\cdot\dfrac{899}{30^2}\)
\(=\dfrac{1\cdot3}{2\cdot2}\cdot\dfrac{2\cdot4}{3\cdot3}\cdot...\cdot\dfrac{29\cdot31}{30\cdot30}\)
\(=\dfrac{1\cdot2\cdot3\cdot...\cdot29}{2\cdot3\cdot...\cdot30}\cdot\dfrac{3\cdot4\cdot...\cdot31}{2\cdot3\cdot...\cdot30}\)
\(=\dfrac{1}{30}\cdot\dfrac{31}{2}=\dfrac{31}{60}\)
\(D=\dfrac{3}{1\cdot2}+\dfrac{3}{2\cdot3}+...+\dfrac{3}{99\cdot100}\)
\(=3\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\right)\)
\(=3\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=3\left(1-\dfrac{1}{100}\right)=3\cdot\dfrac{99}{100}=\dfrac{297}{100}\)
\(E=\dfrac{\dfrac{1}{9}-\dfrac{5}{6}-4}{\dfrac{7}{12}-\dfrac{1}{36}-10}=\dfrac{2-15-72}{18}:\dfrac{21-1-360}{36}\)
\(=\dfrac{-85}{18}\cdot\dfrac{36}{-340}=\dfrac{36}{18}\cdot\dfrac{85}{340}=\dfrac{2}{4}=\dfrac{1}{2}\)
Vì 9,12 < 9,7
Nên 9,12 x (-1) > 9,7 x (-1)
-9,12 > - 9,7
Khi nhân cả hai vế của bất đẳng thức với cùng một số âm thì bất đẳng thức đổi chiều.
a: Xét (O) có
ΔCMD nội tiếp
CD là đường kính
Do đó: ΔCMD vuông tại M
Xét tứ giác NODM có \(\widehat{NOD}+\widehat{NMD}=90^0+90^0=180^0\)
nên NODM là tứ giác nội tiếp
b: Xét (O) có CD,AB là các đường kính và CD\(\perp\)AB
nên \(sđ\stackrel\frown{AC}=sđ\stackrel\frown{CB}=sđ\stackrel\frown{AD}=sđ\stackrel\frown{BD}=90^0\)
Xét (O) có \(\widehat{MNA}\) là góc có đỉnh trong đường tròn chắn hai cung AM,CB
nên \(\widehat{MNA}=\dfrac{1}{2}\left(sđ\stackrel\frown{AM}+sđ\stackrel\frown{CB}\right)\)
=>\(\widehat{MNA}=\dfrac{1}{2}\cdot\left(sđ\stackrel\frown{AM}+sđ\stackrel\frown{AC}\right)=\dfrac{1}{2}\cdot sđ\stackrel\frown{MC}\left(1\right)\)
Xét (O) có
\(\widehat{MBC}\) là góc nội tiếp chắn cung MC
nên \(\widehat{MBC}=\dfrac{1}{2}\cdot sđ\stackrel\frown{MC}\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{MNA}=\widehat{MBC}\)
Ta có: \(x+y+z=1\Rightarrow z=1-x-y\)
Khi đó: \(xy+z=xy+1-x-y\)
\(=x\left(y-1\right)-\left(y-1\right)=\left(x-1\right)\left(y-1\right)\) (1)
Tương tự, ta cũng có: \(\left\{{}\begin{matrix}yz+x=\left(y-1\right)\left(z-1\right)\\zx+y=\left(z-1\right)\left(x-1\right)\end{matrix}\right.\) (2)
Lại có: \(x+y+z=1\Rightarrow\left\{{}\begin{matrix}x+y=1-z\\y+z=1-x\\z+x=1-y\end{matrix}\right.\) (3)
Thay (1); (2) và (3) vào \(T\), ta được:
\(T=\dfrac{\left[\left(x-1\right)\left(y-1\right)\right]\left[\left(y-1\right)\left(z-1\right)\right]\left[\left(z-1\right)\left(x-1\right)\right]}{\left(1-z\right)^2\left(1-x\right)^2\left(1-y\right)^2}\)
\(=\dfrac{\left(x-1\right)^2\left(y-1\right)^2\left(z-1\right)^2}{\left(x-1\right)^2\left(y-1\right)^2\left(z-1\right)^2}=1\)
Vậy \(T=1\).
a: Xét ΔHBA vuông tại H và ΔHCB vuông tại H có
\(\widehat{HBA}=\widehat{HCB}\left(=90^0-\widehat{HAB}\right)\)
Do đó: ΔHBA~ΔHCB
=>\(\dfrac{HB}{HC}=\dfrac{HA}{HB}\)
=>\(HB^2=HA\cdot HC\)
b: Ta có: HM\(\perp\)BA
BC\(\perp\)BA
Do đó: HM//BC
Xét ΔAMH vuông tại M và ΔHNC vuông tại N có
\(\widehat{MHA}=\widehat{NCH}\)(hai góc đồng vị, MH//BC)
Do đó: ΔAMH~ΔHNC
c: Xét tứ giác BMHN có \(\widehat{BMH}=\widehat{BNH}=\widehat{MBN}=90^0\)
nên BMHN là hình chữ nhật
=>\(\widehat{NMH}=\widehat{NBH}\)
mà \(\widehat{NBH}=\widehat{BAC}\left(=90^0-\widehat{C}\right)\)
nên \(\widehat{NMH}=\widehat{BAC}\)
Ta có: BMHN là hình chữ nhật
=>\(\widehat{MNH}=\widehat{MBH}\)
mà \(\widehat{MBH}=\widehat{C}\left(=90^0-\widehat{A}\right)\)
nên \(\widehat{MNH}=\widehat{C}\)
Ta có: ΔCHN vuông tại N
mà NI là đường trung tuyến
nên IN=IH
=>ΔINH cân tại I
=>\(\widehat{INH}=\widehat{IHN}\)
mà \(\widehat{IHN}=\widehat{A}\)(hai góc đồng vị, NH//AB)
nên \(\widehat{INH}=\widehat{A}\)
Ta có: ΔHMA vuông tại M
mà MK là đường trung tuyến
nên KH=KM
=>ΔKHM cân tại K
=>\(\widehat{KMH}=\widehat{KHM}\)
mà \(\widehat{KHM}=\widehat{C}\)(hai góc đồng vị, MH//BC)
nên \(\widehat{KMH}=\widehat{C}\)
\(\widehat{INM}=\widehat{INH}+\widehat{MNH}=\widehat{C}+\widehat{A}=90^0\)
=>IN\(\perp\)NM(1)
\(\widehat{KMN}=\widehat{KMH}+\widehat{NMH}=\widehat{C}+\widehat{A}=90^0\)
=>NM\(\perp\)MK(2)
Từ (1),(2) suy ra MK//NI
Xét tứ giác KMNI có MK//NI
nên KMNI là hình thang
Hình thang KMNI có IN\(\perp\)NM
nên KMNI là hình thang vuông
a: Xét ΔABC có DE//BC
nên \(\dfrac{DE}{BC}=\dfrac{AD}{AB}\)
=>\(\dfrac{DE}{8}=\dfrac{2}{5}\)
=>\(DE=8\cdot\dfrac{2}{5}=3,2\left(cm\right)\)
b: Xét tứ giác BDFC có
BD//FC
DF//BC
Do đó: BDFC là hình bình hành
=>DF=BC=8cm
DE+EF=DF
=>EF+3,2=8
=>EF=4,8(cm)
Xét ΔIFE và ΔIBC có
\(\widehat{IFE}=\widehat{IBC}\)(hai góc so le trong, FE//BC)
\(\widehat{FIE}=\widehat{BIC}\)(hai góc đối đỉnh)
Do đó: ΔIFE~ΔIBC
=>\(\dfrac{IF}{IB}=\dfrac{IE}{IC}=\dfrac{FE}{BC}\)
=>\(\dfrac{IF}{IB}=\dfrac{4.8}{8}=\dfrac{3}{5}\)
c: Xét ΔIFC và ΔIBA có
\(\widehat{IFC}=\widehat{IBA}\)(hai góc so le trong, FC//BA)
\(\widehat{FIC}=\widehat{BIA}\)(hai góc đối đỉnh)
Do đó: ΔIFC~ΔIBA
=>\(\dfrac{IF}{IB}=\dfrac{IC}{IA}\)
=>\(\dfrac{IC}{IA}=\dfrac{IE}{IC}\)
=>\(IC^2=IE\cdot IA\)
Thời gian xe máy đi hết quãng đường AB:
8 giờ 50 phút - 7 giờ 20 phút = 1 giờ 30 phút = 1,5 giờ
Vận tốc xe máy:
67,5 : 1,5 = 45 (km/giờ)
Thời gian xe đạp đi hết quãng đường AB:
1 giờ 30 phút + 4 giờ 30 phút = 6 giờ
Vận tốc xe đạp:
67,5 : 6 = 11,25 (km/giờ)