K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2020

a) ĐKXĐ: thỏa mãn với mọi a thực

b) ĐKXĐ: \(\frac{1}{2a+1}>0\)

\(\Rightarrow2a+1>0\Rightarrow2a>-1\Leftrightarrow a>-\frac{1}{2}\)

c) ĐKXĐ: \(a\left(1-a\right)\ge0\)

+ Nếu: \(\hept{\begin{cases}a\ge0\\1-a\ge0\end{cases}}\Leftrightarrow1\ge a\ge0\)

+ Nếu: \(\hept{\begin{cases}a\le0\\1-a\le0\end{cases}\Rightarrow}\hept{\begin{cases}a\le0\\a\ge1\end{cases}}\)(vô lý)

Vậy \(0\le a\le1\)

d) ĐKXĐ: \(\frac{2}{\left(a-2\right)\left(a+3\right)}>0\)

\(\Rightarrow\left(a-2\right)\left(a+3\right)>0\)

+ Nếu: \(\hept{\begin{cases}a-2>0\\a+3>0\end{cases}}\Rightarrow a>2\)

+ Nếu: \(\hept{\begin{cases}a-2< 0\\a+3< 0\end{cases}}\Rightarrow a< -3\)

Vậy \(\orbr{\begin{cases}a>2\\a< -3\end{cases}}\)

6 tháng 8 2020

Để biểu thức có nghĩa thì :

\(\sqrt{4+a^2}\left(đk:\forall a-tmđk\right)\)

\(\sqrt{\frac{1}{2a+1}}\left(đk:a\ne-\frac{1}{2};a\ge-\frac{1}{2}\Leftrightarrow a>-\frac{1}{2}\right)\)

\(\sqrt{a\left(1-a\right)}\left(đk:a\ge0\right)\)

\(\sqrt{\frac{2}{\left(a-2\right)\left(a+3\right)}}\left(đk:a\ge2;a\ne2\Leftrightarrow a>2\right)\)

6 tháng 8 2020

\(A=x-\frac{2x-2\sqrt{x}}{\sqrt{x}-1}+\frac{x\sqrt{x}+1}{x-\sqrt{x}+1}+1\left(đk:x\ne1;x\ge0\right)\)

\(=x-2\sqrt{x}+1+\frac{x\sqrt{x}+1}{x-\sqrt{x}+1}\)

\(=1-2\sqrt{x}+\frac{x^2+x+1}{x-\sqrt{x}+1}\)

\(=1+\frac{x^2+3x+1-2x\sqrt{x}-2\sqrt{x}}{x-\sqrt{x}+1}\)

\(=\frac{x-\sqrt{x}+1+x^2+3x+1-2x\sqrt{x}-2\sqrt{x}}{x-\sqrt{x}+1}\)

\(=\frac{x^2+4x-3\sqrt{x}-2x\sqrt{x}+2}{x-\sqrt{x}+1}\)

bạn thử chia đa thức cho đa thức xem

6 tháng 8 2020

Bg

Ta có: 2x + 3y = 0   (x, y thuộc Q)

=> 2x = -3y

=> x = -3y ÷ 2

=> x = \(\frac{-3}{2}\)y

Vậy với mọi y thuộc Q và x = \(\frac{-3}{2}\)y

6 tháng 8 2020

Ta có : \(2x+3y=0\Leftrightarrow2x=-3y\)

Ta có tỉ lệ : \(\frac{x}{-3}=\frac{y}{2}\)(K) 

Từ K Suy ra : \(x=-\frac{3y}{2};y=-\frac{2x}{3}\)

6 tháng 8 2020

bạn vào thống kê của mình có link tham khảo 

Câu hỏi của Duy Saker Hy - Toán lớp 9 - Học toán với OnlineMath

6 tháng 8 2020

\(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}=\left|\sqrt{3}-2\right|+\left|1+\sqrt{3}\right|=-\sqrt{3}-2+1+\sqrt{3}=-1\)

(Vì \(\sqrt{3}< 2\)

6 tháng 8 2020

Để cho gọn, đặt {x2=ay2=b

(a+4b+28)2−17a2−17b2=238b+833

\(\Leftrightarrow\)a2+16b2+784+8ab+56a+224b−17a2−17b2=238b+833

\(\Leftrightarrow\)16a2+b2+49−8ab−56a+14b=0

\(\Leftrightarrow\)(4a−b−7)2=0 ⇔4a−b−7=0⇔4x2−y2−7=0

\(\Leftrightarrow\)(2x−y)(2x+y)=7

Do 2x+y>2x−y với mọi x, y nguyên dương và 2x+y>0 với mọi x, y nguyên dương

\(\Rightarrow\){2x−y=12x+y=7 \(\Rightarrow\){x=2y=3

Vậy pt có cặp nghiệm nguyên dương duy nhất (x;y)=(2;3)

#Shinobu Cừu

6 tháng 8 2020

Dễ thôi

Ta có:

\(ab+bc+ca+abc=4\Rightarrow\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=1\) ( cái này cơ bản )

Theo AM - GM:

\(\left(a+b\right)^2+20=\left[\left(a+b\right)^2+4\right]+16\ge4\left(a+b\right)+16=4\left[\left(a+2\right)+\left(b+2\right)\right]\)

Áp dụng Cauchy Schwarz:

\(P\le\Sigma\frac{4}{4\left[\left(a+2\right)+\left(b+2\right)\right]}=\Sigma\frac{1}{\left(a+2\right)+\left(b+2\right)}\le\frac{1}{4}\Sigma\left(\frac{1}{a+2}+\frac{1}{b+2}\right)=\frac{1}{2}\)

Đẳng thức xảy ra tại a=b=c=1

6 tháng 8 2020

Bác Cool kid chỉ em biến đối đê :D

Bài này có thể biểu diễn dưới dạng tổng bình phương nhưng khá xấu. (Vào TKHĐ xem ảnh)

117335667_2660039447596072_3894082951592785965_n.png?_nc_cat=105&_nc_sid=b96e70&_nc_ohc=x98tbXVuO9QAX-tqVgB&_nc_ht=scontent-xsp1-1.xx&oh=f6d6b3aab4df85fe13bf7c66b47f0bee&oe=5F51AA40

6 tháng 8 2020

bn vào VIỆT JACK ý cái gì cũng có 

hok tốt

6 tháng 8 2020

đk: x>=1

\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}-1\)

\(\Leftrightarrow\sqrt{x-1-2\sqrt{x-1}+1}=\sqrt{x-1}-1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}=\sqrt{x-1}-1\)

\(\Leftrightarrow\left|\sqrt{x-1}-1\right|=\sqrt{x-1}-1\)

\(\Leftrightarrow\sqrt{x-1}-1=0\)( vì |A|=A <=> A>=0)

<=> x =2 (tmđk)

vậy x=2

6 tháng 8 2020

\(\sqrt{4x-20}-3\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\left(đk:...\right)\)(tự tìm đk đi)

\(< =>\sqrt{4\left(x-5\right)}-\sqrt{9}.\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\)

\(< =>\sqrt{4}.\sqrt{x-5}-\sqrt{\frac{9\left(x-5\right)}{9}}=\sqrt{1-x}\)

\(< =>2\sqrt{x-5}-\sqrt{x-5}=\sqrt{1-x}\)

\(< =>\sqrt{x-5}.\left(2-1\right)=\sqrt{1-x}\)

\(< =>\sqrt{x-5}=\sqrt{1-x}< =>x-5=1-x\)

\(< =>x+x=1+5< =>2x=6< =>x=3\)(đối chiếu đk)