Cho hàm số \(y=f\left(x\right)=\frac{\left|x+1\right|+\left|x-1\right|}{\left|x+1\right|-\left|x-1\right|}\)
Chứng minh rằng \(f\left(-x\right)=-f\left(x\right)\) với mọi x trên tập xác định.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3.\sqrt{\frac{1}{3}}-\frac{1}{\sqrt{3}+\sqrt{2}}=\sqrt{9.\frac{1}{3}}-\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}\)
\(=\sqrt{3}-\frac{\sqrt{3}-\sqrt{2}}{3-2}=\sqrt{3}-\left(\sqrt{3}-\sqrt{2}\right)=\sqrt{3}-\sqrt{3}+\sqrt{2}=\sqrt{2}\)
\(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)
\(\Leftrightarrow a+b=a+c+b+c+2\sqrt{\left(a+c\right)\left(b+c\right)}\)
\(\Leftrightarrow2c+2\sqrt{ab+bc+ca+c^2}=0\)
Theo giả thiết \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow ab+bc+ca=0\)
Khi đó \(c=0?\)
Nhầm chỗ nào nhắc mình với nha mình cảm ơn nhiều
áp dụng bđt Min-cốp-xki ta có \(\sqrt{x^2+xy+y^2}+\sqrt{x^2+xz+z^2}=\sqrt{\left(x^2+xy+\frac{y^2}{4}\right)+\frac{3y^2}{4}}+\sqrt{\left(x^2+xz+\frac{z^2}{4}\right)+\frac{3z^2}{4}}\)\(=\sqrt{\left(x+\frac{y}{2}\right)^2+\left(\frac{\sqrt{3}y}{2}\right)^2}+\sqrt{\left(-x-\frac{z}{2}\right)^2+\left(\frac{\sqrt{3}z}{2}\right)^2}\)\(\ge\sqrt{\left(x+\frac{y}{2}-x-\frac{z}{2}\right)^2+\left(\frac{\sqrt{3}y}{2}+\frac{\sqrt{3}z}{2}\right)^2}=\sqrt{\frac{y^2}{4}-\frac{yz}{2}+\frac{z^2}{4}+\frac{3y^2}{4}+\frac{3yz}{2}+\frac{3z^2}{4}}\)
\(=\sqrt{y^2+yz+z^2}\)
Ai giúp em với ạ
Bài này thầy em bảo dùng BĐT Bunhiacopxki
với mọi x thuộc D ta có:
\(f\left(-x\right)=\frac{\left|-x+1\right|+\left|-x-1\right|}{\left|-x+1\right|-\left|-x-1\right|}=\frac{\left|-\left(x-1\right)\right|+\left|-x\left(x+1\right)\right|}{\left|-\left(x-1\right)\right|-\left|-\left(x+1\right)\right|}=\frac{\left|x-1\right|+\left|x+1\right|}{\left|x-1\right|-\left|x+1\right|}\)
\(=-\frac{\left|x+1\right|+\left|x-1\right|}{\left|x+1\right|-\left|x-1\right|}=-f\left(x\right)\)