Cho tập hợp A ={1;4;9;16;25;36;49}. Hãy viết Tập A theo tính chất đặc trưng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-2\right)^2-\left(x+3\right)^2+\left(x+4\right)\left(x-4\right)=0\\ < =>x^2-4x+4-x^2-6x-9+x^2-16=0\\ < =>x^2-10x-21=0\\ < =>\left(x^2-10x+25\right)-46=0\\ < =>\left(x-5\right)^2=46\\ < =>\left[{}\begin{matrix}x-5=\sqrt{46}\\x-5=-\sqrt{46}\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\sqrt{46}+5\\x=5-\sqrt{46}\end{matrix}\right.\)
\(\dfrac{3}{5}+x=5-\dfrac{1}{2}\\ \dfrac{3}{5}+x=\dfrac{10}{2}-\dfrac{1}{2}\\ \dfrac{3}{5}+x=\dfrac{10-1}{2}\\ \dfrac{3}{5}+x=\dfrac{9}{2}\\ x=\dfrac{9}{2}-\dfrac{3}{5}\\ x=\dfrac{45}{20}-\dfrac{6}{10}\\ x=\dfrac{45-6}{10}\\ x=\dfrac{39}{10}\)
Vậy: ...
\(7-\left(x-1\right)=15+3\left(x+1\right)\\ 7-x+1=15+3x+3\\ 8-x=18+3x\\ 3x+x=8-18\\ 4x=-10\\ x=-\dfrac{10}{4}\\ x=\dfrac{-5}{2}\)
Vậy: ...
\(\left(\dfrac{-5}{9}\right)^{10}:x=\left(\dfrac{-5}{9}\right)^8\\ =>x=\left(\dfrac{-5}{9}\right)^{10}:\left(\dfrac{-5}{9}\right)^8\\ =>x=\left(-\dfrac{5}{9}\right)^{10-8}\\ =>x=\left(-\dfrac{5}{9}\right)^2\\ =>x=\dfrac{\left(-5\right)^2}{9^2}\\ =>x=\dfrac{25}{81}\)
\(\left(-\dfrac{5}{9}\right)^{10}:x=\left(-\dfrac{5}{9}\right)^8\\ \Rightarrow x=\left(-\dfrac{5}{9}\right)^{10-8}\\ \Rightarrow x=\left(-\dfrac{5}{9}\right)^2\\ \Rightarrow x=\dfrac{25}{81}\)
Vậy: \(x=\dfrac{25}{81}\)
\(\left|4-x\right|+2x=0\)
`TH1:x<=4`
`(4-x)+2x=0`
`=>4-x+2x=0`
`=>x+4=0`
`=>x=-4(tm)`
`TH2:x>4`
`-(4-x)+2x=0`
`=>-4+x+2x=0`
`=>3x-4=0`
`=>3x=4`
`=>x=4/3` (ktm)
Vậy: ...
\(x^2+2\left|x-\dfrac{1}{2}\right|=\left|x^2+2\right|\\ =>x^2+2\left|x-\dfrac{1}{2}\right|=x^2+2\left(x^2+2>0\right)\\ =>2\left|x-\dfrac{1}{2}\right|=2\\ =>\left|x-\dfrac{1}{2}\right|=1\\ TH1:x>\dfrac{1}{2}\\ =>x-\dfrac{1}{2}=1\\ =>x=1+\dfrac{1}{2}=\dfrac{3}{2}\\ TH2:x< =\dfrac{1}{2}\\ =>x-\dfrac{1}{2}=-1\\ =>x=\dfrac{1}{2}-1=-\dfrac{1}{2}\left(tm\right)\)
a.
\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)
\(\Rightarrow\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ca\right)^2\)
\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2\right)+8abc\left(a+b+c\right)\)
\(\Rightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
b.
Từ câu a:
\(a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\Rightarrow2\left(a^4+b^4+c^4\right)=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\Rightarrow2\left(a^4+b^4+c^4\right)=\left(a^2+b^2+c^2\right)^2\)
\(\Rightarrow a^4+b^4+c^4=\dfrac{\left(a^2+b^2+c^2\right)^2}{2}\)
Giải:
Tỉ số số bi của An và số bi của Bình là:
\(\dfrac{1}{7}\) : \(\dfrac{1}{2}\) = \(\dfrac{2}{7}\)
Theo bài ra ta có sơ đồ:
Theo sơ đồ ta có:
Số bi của An là:
150 : (7 - 2) x 2 = 60 (viên bi)
Số bi của Bình là:
150 + 60 = 210 (viên bi)
Đáp số: ....
\(\left(1-\dfrac{1}{2}\right)\times\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{1}{4}\right)\times\left(1-\dfrac{1}{5}\right)\\ =\dfrac{1}{2}\times\dfrac{2}{3}\times\dfrac{3}{4}\times\dfrac{4}{5}\\ =\dfrac{1}{5}\\ ===============\\ \left(1-\dfrac{3}{4}\right)\times\left(1-\dfrac{3}{7}\right)\times\left(1-\dfrac{3}{10}\right)\times...\times\left(1-\dfrac{3}{97}\right)\times\left(1-\dfrac{3}{100}\right)\\ =\dfrac{1}{4}\times\dfrac{4}{7}\times\dfrac{7}{10}\times...\times\dfrac{94}{97}\times\dfrac{97}{100}\\ =\dfrac{1}{100}\)
\(\left(1-\dfrac{1}{2}\right)\times\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{1}{4}\right)\times\left(1-\dfrac{1}{5}\right)\)
\(=\dfrac{1}{2}\times\dfrac{2}{3}\times\dfrac{3}{4}\times\dfrac{4}{5}\)
\(=\dfrac{1\times2\times3\times4}{2\times3\times4\times5}\)
\(=\dfrac{1}{5}\)
\(\left(1-\dfrac{3}{4}\right)\times\left(1-\dfrac{3}{7}\right)\times\left(1-\dfrac{3}{10}\right)\times\left(1-\dfrac{3}{13}\right)\times...\times\left(1-\dfrac{3}{97}\right)\times\left(1-\dfrac{3}{100}\right)\)
\(=\dfrac{1}{4}\times\dfrac{4}{7}\times\dfrac{7}{10}\times\dfrac{10}{13}\times...\times\dfrac{94}{97}\times\dfrac{97}{100}\)
\(=\dfrac{1\times4\times7\times10\times...\times94\times97}{4\times7\times10\times13\times...\times97\times100}\)
\(=\dfrac{1}{100}\)
\(A=\left\{n^2\text{ }|\text{ }n\in N,\text{ }1\le n\le7\text{ }\right\}\)
Hoặc:
\(A=\left\{x\text{ }|\text{ }\text{x là số chính phương},\text{ }0< x< 50\right\}\)