K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2020

Thay \(\left(a,b,c\right)=\left(2,5,10\right)\) vao gt ta thay ko thoa man

Sua lai de : CMR \(a^3+b^3+c^3-3abc⋮a+b+c\) 

CM:

\(VT=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ab\right)⋮\left(a+b+c\right)\)

12 tháng 8 2020

Xét \(A=a^{2024}-a^{2020}=a^{2020}\left(a^4-1\right)\)

- Chứng minh A chia hết cho 2:
 +) Nếu a lẻ thì \(a-1\)chẵn nên A chia hết cho 2

 +) Nếu a chẵn thì \(a^{2020}\)chẵn nên A chia hết cho 2

- Chứng minh A chia hết cho 3:
 +) Nếu a chia hết cho 3 thì \(a^{2020}\)chia hết cho 3 nên A chia hết cho 3

 +) Nếu a không chia hết cho 3 thì \(a^2\equiv1\)(mod 3) \(\Rightarrow a^4\equiv1\)(mod 3). Vậy \(a^4-1\)chia hết cho 3 nên A chia hết cho 3
- Chứng minh A chia hết cho 5:

 +) Nếu a chia hết cho 5 thì \(a^{2020}\)chia hết cho 5 nên a chia hết cho 5

 +) Nếu a không chia hết cho 5 thì \(a^2\equiv1,4\)(mod 5) \(\Rightarrow a^4\equiv1\)(mod 5). Vậy \(a^4-1\)chia hết cho 5 nên A chia hết cho 5

Từ đây ta có A chia hết cho 2, 3, 5 vậy A chia hết cho 30 \(\Rightarrow a^{2024}\equiv a^{2020}\)(mod 30)

\(\Rightarrow a^{2020}+b^{2020}+c^{2020}\equiv a^{2024}+b^{2024}+c^{2024}\equiv7\)(mod 30)
Vậy \(a^{2024}+b^{2024}+c^{2024}\)chia 30 dư 7

12 tháng 8 2020

GIÚP MÌNH VỚI NHAAAA <33333

12 tháng 8 2020

gt <=> \(a+2901+b+2901+2\sqrt{\left(a+2901\right)\left(b+2901\right)}=4\left(c+2901\right)\)      (Bình phương 2 vế)

<=>   \(a+b+2\sqrt{\left(a+2901\right)\left(b+2901\right)}=4c+5802\)      (1)

TA ÁP DỤNG BĐT CAUCHY 2 SỐ, ĐƯỢC:

 \(2\sqrt{\left(a+2901\right)\left(b+2901\right)}\le a+2901+b+2901\)

=> \(a+b+2\sqrt{\left(a+2901\right)\left(b+2901\right)}\le a+b+a+2901+b+2901\)        (2)

TỪ (1) VÀ (2) TA ĐƯỢC: 

=> \(4c+5802\le a+b+a+2901+b+2901\)

=> \(4c\le2\left(a+b\right)\)

=> \(2c\le a+b\)

VẬY TA CÓ ĐPCM:     \(a+b\ge2c\)

12 tháng 8 2020

chứng minh và vận dụng được bất đẳng thức \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(2\left(\sqrt{a+2901}^2+\sqrt{b+2901}^2\right)\ge\left(\sqrt{a+2901}+\sqrt{b+2901}\right)^2=4\sqrt{c+2901}\)

\(\Leftrightarrow2\left(a+b\right)\ge4c\)

từ đó ta có đpcm

12 tháng 8 2020

1)  Cách 1 :

\(M=\sqrt{11-6\sqrt{2}}+\sqrt{11+6\sqrt{2}}\)

\(M=\sqrt{9-6\sqrt{2}+2}+\sqrt{9+6\sqrt{2}+2}\)

\(M=\sqrt{\left(3-\sqrt{2}\right)^2}+\sqrt{\left(3+\sqrt{2}\right)^2}\)

\(M=\left|3-\sqrt{2}\right|+\left|3+\sqrt{2}\right|\)

\(M=3-\sqrt{2}+3+\sqrt{2}=6\)

Cách 2 :

\(M=\sqrt{11-6\sqrt{2}}+\sqrt{11+6\sqrt{2}}\)

\(\Rightarrow M^2=11-6\sqrt{2}+2\sqrt{11-6\sqrt{2}}.\sqrt{11+6\sqrt{2}}+11+6\sqrt{2}\)

\(\Leftrightarrow M^2=22+2.7=36\)

\(\Leftrightarrow M=6\left(\sqrt{11-6\sqrt{2}}+\sqrt{11+6\sqrt{2}}>0\right)\)

2) 

\(A=53-20\sqrt{4+\sqrt{9-4\sqrt{2}}}\)

\(\Leftrightarrow A=53-20\sqrt{4+\sqrt{8-4\sqrt{2}+1}}\)

\(\Leftrightarrow A=53-20\sqrt{4+\sqrt{\left(2\sqrt{2}-1\right)^2}}\)

\(\Leftrightarrow A=53-20\sqrt{4+\left|2\sqrt{2}-1\right|}\)

\(\Leftrightarrow A=53-20\sqrt{4+2\sqrt{2}-1}\)

\(\Leftrightarrow A=53-20\sqrt{3+2\sqrt{2}}\)

\(\Leftrightarrow A=53-20\sqrt{2+2\sqrt{2}+1}\)

\(\Leftrightarrow A=53-20\left(\sqrt{2}+1\right)\)

\(\Leftrightarrow A=53-20\sqrt{2}-20=33-20\sqrt{2}\)

12 tháng 8 2020

3) 

\(M=\sqrt{3-\sqrt{5}}.\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\)

\(M=\sqrt{3-\sqrt{5}}.\left(3\sqrt{10}-3\sqrt{2}+5\sqrt{2}-\sqrt{10}\right)\)

\(M=\sqrt{3-\sqrt{5}}\left(2\sqrt{10}+2\sqrt{2}\right)\)

\(M=2\sqrt{2}.\sqrt{3-\sqrt{5}}\left(\sqrt{5}+1\right)\)

\(\Rightarrow M^2=8.\left(3-\sqrt{5}\right).\left(5+2\sqrt{5}+1\right)\)

\(\Leftrightarrow M^2=\left(24-8\sqrt{5}\right)\left(6+2\sqrt{5}\right)\)

\(\Leftrightarrow M^2=144+48\sqrt{5}-48\sqrt{5}-80\)

\(\Leftrightarrow M^2=64\Leftrightarrow M=8\left(\sqrt{3-\sqrt{5}}.\left(3+\sqrt{5}\right).\left(\sqrt{10}-\sqrt{2}\right)>0\right)\)

12 tháng 8 2020

\(M=a^4+6a^3+11a^2+6a+24a\) 24.a chia hết cho 24 ta cần c/m

\(a^4+6a^3+11a^2+6a\) chia hết cho 24

\(a^4+6a^3+11a^2+6a=a\left(a^3+6a^2+11a+6\right)=\)

\(=a\left(a+1\right)\left(a^2+5a+6\right)=a\left(a+1\right)\left(a+2\right)\left(a+3\right)\)

Ta nhận thấy đây là tích của 4 số TN liên tiếp

Trong 4 số TN liên tiếp thì có 2 số chẵn liên tiếp 1 số chia hết cho 2 và 1 số chia hết cho 4 nên tích của chúng chia hết cho 8

Trong 4 số tự nhiên liên tiếp thì chắc chắn có 1 số chia hết cho 3

=> tích của 4 số TN liên tiếp chia hết cho 3x8=24

Nên \(a^4+6a^3+11a^2+6a⋮24\Rightarrow M⋮24\)

12 tháng 8 2020

ĐKXĐ : \(\hept{\begin{cases}a\ne0\\a\le1\\a\ge1\end{cases}\Rightarrow a=1}\)

\(A=\sqrt{1-1}+\sqrt{1\left(1-1\right)}+1.\sqrt{\frac{1-1}{1}}=0\)

12 tháng 8 2020

Cảm ơn bạn nhé nhưng sai mất rồi

12 tháng 8 2020

minh chiu ban ah thng cam

12 tháng 8 2020

ĐK: \(x\ge0;y\ge1;z\ge2\)

Theo AM-GM thì \(\sqrt{x}\le\frac{x+1}{2};\sqrt{y-1}\le\frac{y}{2};\sqrt{z-2}\le\frac{z-1}{2}\)

\(\Rightarrow\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}\le\frac{x+1}{2}+\frac{y}{2}+\frac{z-1}{2}\)

\(\Leftrightarrow\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}\le\frac{1}{2}\left(x+y+z\right)\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}2\sqrt{x}=x+1\\2\sqrt{y-1}=y\\2\sqrt{z-2}=z-1\end{cases}}\Leftrightarrow x=1;y=2;z=3\)

Vậy \(x=1;y=2;z=3\)

12 tháng 8 2020

Mình cần gấp ạ!!