cho tứ giác MNPQ.trên cạnh MQ lấy G và E sao cho MG=GE=EC;trên np lấy H và F sao cho NH=HF=FD.tính diện tích tứ giác GHFE biết diện tích MNPQ=1200 cm2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^2}{x-1}=\frac{x}{x-1}\left(ĐKXĐ:x\ne1\right)\)
\(\Rightarrow x^2=x\)
\(\Leftrightarrow x^2-x=0\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\left(TMĐKXĐ\right)\\x=1\left(KTMĐKXĐ\right)\end{cases}}\)\(\Leftrightarrow x=0\)(tm ; thỏa mãn; k : không)
Vậy phương trình có nghiệm duy nhất: x = 0
ĐKXĐ : x ≠ 1
từ pt => x2 = x
<=> x( x - 1 ) = 0
<=> x = 0 (tm) hoặc x = 1 (ktm)
Vậy x = 0
\(\hept{\begin{cases}x-1=a\\y-2=b\\z-3=c\end{cases}}\Rightarrow a+b+c=x+y+z-6=0\).
Ta có:
\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow a+b=0\)hoặc \(b+c=0\)hoặc \(c+a=0\).
\(\Leftrightarrow\hept{\begin{cases}a=-b\\c=0\end{cases}}\)hoặc \(\hept{\begin{cases}b=-c\\a=0\end{cases}}\)hoặc \(\hept{\begin{cases}c=-a\\b=0\end{cases}}\).
Khi đó \(P=a^{2021}+b^{2021}+c^{2021}=0\).
Giả sử tồn tại số \(p\)thỏa mãn.
Ta đặt \(\frac{p^2-p-2}{2}=a^3\).
- \(p=2\)thỏa mãn.
- \(p>2\)do là số nguyên tố nên \(p\)lẻ.
Ta có: \(\frac{p^2-p-2}{2}=a^3\Leftrightarrow p\left(p-1\right)=2\left(a+1\right)\left(a^2-a+1\right)\)suy ra \(p\)là ước của \(a+1\)hoặc \(a^2-a+1\).
+) \(p|a+1\): \(\frac{p^2-p-2}{2}=a^3\)suy ra \(a< p\Rightarrow a+1=p\).
Thế vào cách đặt ban đầu ta được \(\frac{\left(a+1\right)^2-\left(a+1\right)-2}{2}=a^3\Leftrightarrow2a^3-a^2-a+2=0\)
\(\Leftrightarrow a=-1\)không thỏa.
+) \(p|a^2-a+1\): Đặt \(a^2-a+1=kp\)(1).
\(p\left(p-1\right)=2\left(a+1\right)\left(a^2-a+1\right)=2\left(a+1\right)kp\)
\(\Rightarrow p-1=2\left(a+1\right)k\Leftrightarrow p=2k\left(a+1\right)+1\)thế vào (1):
\(a^2-a+1=k\left[2k\left(a+1\right)+1\right]\)
\(\Leftrightarrow a^2-\left(2k^2+1\right)a-2k^2-k+1=0\)
\(\Delta=\left(2k^2+1\right)^2-4\left(-2k^2-k+1\right)=4k^4+12k^2+4k-3\).
Ta cần tìm số tự nhiên \(k\)để \(\Delta\)là số chính phương.
Ta có: \(4k^4+12k^2+4k-3>4k^4+8k^2+4=\left(2k^2+2\right)^2\)
\(4k^4+12k^2+4k-3< 4k^4+16k^2+16=\left(2k^2+4\right)^2\)
Theo nguyên lí kẹp suy ra \(4k^4+12k^2+4k-3=\left(2k^2+3\right)^2\)
\(\Leftrightarrow4k-3=9\Leftrightarrow k=3\).
Với \(k=3\): \(a^2-19a-20=0\Rightarrow a=20\Rightarrow p=127\).
Vậy \(p\in\left\{2,127\right\}\).
\(n^2+5n+15⋮49\)
\(\Rightarrow n^2+5n+15⋮7\)
\(\Leftrightarrow n^2-2n+1=\left(n-1\right)^2⋮7\)
\(\Leftrightarrow n-1⋮7\)
\(\Leftrightarrow n=7k+1,k\inℕ\).
\(n^2+5n+15=\left(7k+1\right)^2+5\left(7k+1\right)+15\)
\(=49k^2+49k+6⋮̸49\).
Ta có đpcm.
\(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)
\(S=\frac{a^2+b^2}{ab}\ge\frac{2ab}{ab}=2\)
Dấu \(=\)xảy ra khi \(a=b\).
Vậy \(minS=2\).
\(S=\frac{a^2+b^2}{ab}=\frac{a^2}{ab}+\frac{b^2}{ab}\ge\frac{\left(a+b\right)^2}{2ab}\)( Cauchy-Schwarz dạng Engel )
Lại có : \(2ab\le\frac{\left(a+b\right)^2}{2}\)( AM-GM )
\(\Rightarrow\frac{1}{2ab}\ge\frac{1}{\frac{\left(a+b\right)^2}{2}}=\frac{2}{\left(a+b\right)^2}\Rightarrow\frac{\left(a+b\right)^2}{2ab}\ge2\)
Dấu "=" xảy ra <=> a = b
Vậy MinS = 2
Đặt \(\hept{\begin{cases}a-b=x\\b-c=y\\c-a=z\end{cases}}\Rightarrow x+y+z=0\).
\(A^2=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)
\(=4+2.\frac{x+y+z}{xyz}=4+0=4\).
\(\Leftrightarrow A=\pm2\).