Tìm số dư của 216^69 chia cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(ĐKXĐ:x>0;x\ne4\)
Ta có : \(P=\left(\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{4x}{2\sqrt{x}-x}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}\right)\)
\(=\left[\frac{\sqrt{x}.\sqrt{x}-4x}{\sqrt{x}.\left(\sqrt{x}-2\right)}\right]\cdot\frac{\sqrt{x}-2}{\sqrt{x}+3}\)
\(=\frac{-3x}{\sqrt{x}.\left(\sqrt{x}+3\right)}\)
b) Ta có : \(x-1=10-4\sqrt{6}=\left(\sqrt{6}-2\right)^2\)
\(\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{6}-2\right)^2+1}\)
......
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3-\sqrt{5}}\)
\(=\left(3+\sqrt{5}\right).\sqrt{2}.\left(\sqrt{5}-\sqrt{1}\right).\sqrt{3-\sqrt{5}}\)
\(=\left(3+\sqrt{5}\right).\left(\sqrt{5}-1\right).\sqrt{6-2\sqrt{5}}\)
\(=\left(3+\sqrt{5}\right).\left(\sqrt{5}-1\right).\sqrt{5-2\sqrt{5}+1}\)
\(=\left(3+\sqrt{5}\right).\left(\sqrt{5}-1\right)\left(\sqrt{5}-1\right)\)
\(=\frac{6+2\sqrt{5}}{2}.\left(\sqrt{5}-1\right)^2\)
\(=\frac{\left(\sqrt{5}+1\right)^2.\left(\sqrt{5}-1\right)^2}{2}=\frac{\left[\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)\right]^2}{2}\)
\(=\frac{\left(5-1\right)^2}{2}=\frac{4^2}{2}=8\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\sqrt{2x-2\sqrt{x^2-4}}+\sqrt{x-2}=\sqrt{\left(\sqrt{x-2}-\sqrt{x+2}\right)^2}+\sqrt{x-2}\)
\(=\left|\sqrt{x-2}-\sqrt{x+2}\right|+\sqrt{x-2}\)
\(=-\sqrt{x-2}+\sqrt{x+2}+\sqrt{x-2}\)
\(=\sqrt{x+2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
pt <=> \(\sqrt{2x+1}-\sqrt{x+3}=\sqrt{x-1}-\sqrt{2x-1}\)
=> \(3x+4-2\sqrt{\left(2x+1\right)\left(x+3\right)}=3x-2-2\sqrt{\left(x-1\right)\left(2x-1\right)}\)
=> \(3-\sqrt{\left(2x+1\right)\left(x+3\right)}=-\sqrt{\left(x-1\right)\left(2x-1\right)}\)
=> \(9+\left(2x+1\right)\left(x+3\right)-6\sqrt{\left(2x+1\right)\left(x+3\right)}=\left(x-1\right)\left(2x-1\right)\)
<=> \(2x^2+7x+12-6\sqrt{\left(x+3\right)\left(2x+1\right)}=2x^2-3x+1\)
<=> \(10x+11=6\sqrt{\left(x+3\right)\left(2x+1\right)}\)
=> \(\left(10x+11\right)^2=36\left(x+3\right)\left(2x+1\right)\)
<=> \(100x^2+220x+121=36\left(2x^2+7x+3\right)\)
<=> \(28x^2-32x+13=0\)
<=> \(196x^2-224x+91=0\)
<=> \(\left(14x-8\right)^2+27=0\) (*)
Có: \(\left(14x-8\right)^2+27\ge27>0\)
=> PT (*) VÔ NGHIỆM.
VẬY PT \(\sqrt{2x+1}-\sqrt{x+3}=\sqrt{x-1}-\sqrt{2x-1}\) VÔ NGHIỆM.
đk x≥≥3
ta có √2x+1=√x+√x−32x+1=x+x−3
do cả hai vế lớn hơn nên cả bình phương cả 2 vế
pt<=> 2x+1=x+x-3+2√x(x−3)x(x−3)<=> 2=√x(x−3)x(x−3)
<=> 4=x^2-3x
<=>x^2-3x-4=0
<=> (x-4)(x+1)=0
<=> x=4(do x≥3≥3
Vậy S={4}
![](https://rs.olm.vn/images/avt/0.png?1311)
Em biết làm mỗi ý đầu thôi ạ :(
\(\sqrt{9x^2-6x+1}=4\)
\(\Leftrightarrow\sqrt{\left(3x-1\right)^2}=4\)
\(\Leftrightarrow\left|3x-1\right|=4\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=4\\3x-1=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-1\end{cases}}\)
Vậy S = { 5/3 ; -1 }
bạn kiểm tra lại đề bài câu (b) nhé! mình nghĩ là \(\sqrt{x^2+10x+25}=x+4\) chuẩn hơn
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt: \(\sqrt{2x+1}=a,\sqrt{3-2x}=b\)
Từ đó: \(\sqrt{4x-4x^2+3}=ab\)và \(4=a^2+b^2\)
Từ đó biến đổi và giải phương trình. Đây là một cách. (T chưa giải ra :V)
Hoặc là không cần đặt ẩn phụ, biến đổi luôn:
VT=\(\frac{\left(2x-1\right)^2.\left(2x+1\right)\left(3-2x\right)}{\left(2x+1\right)+\left(3-2x\right)}\)
VP=\(\sqrt{2x+1}+\sqrt{3-2x}+2\sqrt{2x+1}.\sqrt{3-2x}+\left(\sqrt{2x+1}\right)^2+\left(\sqrt{3-2x}\right)^2\)
=\(\left(\sqrt{2x+1}+\sqrt{3x+2}\right)\left(\sqrt{2x+1}+\sqrt{3x+2}+1\right)\)
Đến đây có vẻ đơn giản r :>
![](https://rs.olm.vn/images/avt/0.png?1311)
\(ĐK:x\ge0\)
Ta thấy \(\sqrt{x}+1\ge1>0\)
\(\Rightarrow\frac{1}{\sqrt{x}+1}\ge1\) . Mà : \(\sqrt{x}-1\ge-1\)
\(\Rightarrow A\ge-1\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
ĐKXĐ: \(x\ge0\)
Ta có : \(A=\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{\sqrt{x}+1-2}{\sqrt{x}+1}\)
\(=1-\frac{2}{\sqrt{x}+1}\)
A đạt GTNN khi \(\frac{2}{\sqrt{x}+1}\) đạt GTLN <=> \(\sqrt{x}+1\)đạt GTNN
Ta có \(x\ge0\Leftrightarrow\sqrt{x}+1\ge1\)
Dấu "=" xảy ra khi và chỉ khi x=0.\(\Rightarrow MinA=\frac{\sqrt{0}-1}{\sqrt{0}+1}=-1\)
Vậy A đạt giá trị nhỏ nhất là -1 khi và chỉ khi x=0
mọi người ơi giúp em câu này với ạ