K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)\inƯ\left(1\right)=\left\{\pm1\right\}\)

Ta có bảng : 

\(x+\sqrt{1+x^2}\)1-1
\(y+\sqrt{1+y^2}\)1-1
x0vô nghiệm 
y0vô nghiệm 

lỗi @@ đọc nhầm trên tưởng giải PT chưa có nhin  xuống \(\left(x+y\right)^2\)

Làm lại nhớ _-_  sai chịu, làm cái này kham khảo hơi nhìu, chill :v 

\(\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=1\)

Ta có : \(\hept{\begin{cases}\left(x+\sqrt{1+x^2}\right)\left(\sqrt{x^2+1}-x\right)=1\\\left(y+\sqrt{y^2+1}\right)\left(\sqrt{y^2+1}-y\right)=1\end{cases}}\)

Kết hợp giả thiết \(x+\sqrt{1+x^2}=y+\sqrt{y^2+1}\)và 

\(\left(\sqrt{x^2+1}-x\right)=\left(\sqrt{y^2+1}-y\right)\)

Ta  có :  \(\hept{\begin{cases}\sqrt{x^2+1}-x=y+\sqrt{y^2+1}\\\sqrt{y^2+2013}-y=x+\sqrt{x^2+1}\end{cases}}\)

Cộng theo vế ta có : \(-x-y=x+y\Leftrightarrow\left(x+y\right)^2=0\)

16 tháng 8 2020

acâu a bạn cho 2 cái căn ở cuối làm j thế

hiệu bằng 0 rồi mà?

16 tháng 8 2020

A = (x+ căn x^2+2013).(y+ căn y^2+2013) =2013

=> (x+ căn x^2+2013) .(x- căn x^2+2013).(y+ căn y^2+2013) phần (x- căn x^2+2013) =2013

=> -2013 . (y+ căn y^2+2013) phần (x+ căn x^2+2013) = 2013

=> -y  - (y+ căn y^2+2013 ) = x - (x+ căn x^2+2013)   (1)

      -x  - (x+ căn x^2+2013) = y - (y+ căn y^2+2013)    (2)

tu (1) va (2) => x + y = 0

16 tháng 8 2020

Đặt \(\sqrt{x+3}=a\)  và \(\sqrt{x}=b\). ĐKXĐ : x >= 0.

Ta có: a + 2b = 2 + ab.

<=> a - ab + 2b - 2 = 0.

<=> -a.(b-1) + 2(b-1) = 0.

<=> (2 - a).(b - 1) = 0.

<=> a = 2 hoặc b = 1.

Suy ra \(\sqrt{x+3}=2\)hoặc \(\sqrt{x}=1\).

Từ đó, ta có thể tìm được 1 nghiệm duy nhất của phương trình là x = 1. (x=1 thoả mãn ĐKXĐ).

15 tháng 8 2020

bằng 2 nhé

15 tháng 8 2020

vl :>>

15 tháng 8 2020

thiếu = 2 ạ

15 tháng 8 2020

\(A=\frac{x}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}+\frac{y}{\sqrt{x}\left(\sqrt{y}-\sqrt{x}\right)}-\frac{x+y}{\sqrt{xy}}\)

\(A=\frac{x\sqrt{x}\left(\sqrt{y}-\sqrt{x}\right)+y\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)-\left(x+y\right)\left(y-x\right)}{\sqrt{xy}\left(y-x\right)}\)

\(A=\frac{x\sqrt{xy}-x^2+y\sqrt{xy}+y^2-y^2+x^2}{\sqrt{xy}\left(y-x\right)}\)

\(A=\frac{\sqrt{xy}\left(x+y\right)}{\sqrt{xy}\left(y-x\right)}=\frac{y+x}{y-x}\)

KO CÓ GIÁ TRỊ y sao tính đây !!!!!!

CÒN      \(x=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)     nhé

15 tháng 8 2020

a) \(\left(2x-2\sqrt{2x}+1\right)+\left(y-10\sqrt{y}+25\right)=0\)

\(\left(\sqrt{2x}-1\right)^2+\left(\sqrt{y}-5\right)^2=0\)

b) \(\left(x-4\sqrt{x}+4\right)+\left(y-14\sqrt{y}+49\right)=0\)

\(\left(\sqrt{x}-2\right)^2+\left(\sqrt{y}-7\right)^2=0\)

Đặt ĐKXĐ và giải nốt phần sau là xong.

Mình chỉ giải đến đây thôi, còn phần sau bạn tự làm nhé.

15 tháng 8 2020

a, ĐKXĐ : \(x;y\ge0\)

\(2x+y+26=\sqrt{8x}+\sqrt{100y}\)

\(\Leftrightarrow2x+y+26=\sqrt{4.2.x}+\sqrt{10^2y}\)

\(\Leftrightarrow2x+y+1+25-2\sqrt{2}x-10\sqrt{y}=0\)

\(\Leftrightarrow\left(2x-2\sqrt{2}x+1\right)+\left(y-10\sqrt{y}+25\right)=0\)

\(\Leftrightarrow\left(\sqrt{2}x+1\right)^2+\left(\sqrt{y}+5\right)^2=0\)

Tự lm nốt nhá bạn

16 tháng 8 2020


A B C M H K

A) Lấy M là trung điểm của BC. => AM là đường trung tuyến xuất phát từ đỉnh A (Đoạn thẳng AM được ký hiệu thay cho m a).

AB = c; AC = b; BC = a. Kẻ BH vuông góc với AM, CK vuông góc với AM.

Ta có: a^2 = BC^2 = (BM + MC)^2 = (2.BM)^2 = 4.BM^2 = 4.CM^2.

Theo định lý Pytago => c^2 = AB^2 = BH^2 + AH^2; BM^2 = BH^2 + HM^2.

=> 2.AB^2 - 2.BM^2 = 2(AH^2 - HM^2) = 2(AH + MH).(AH - MH) = 2.AM.(AH - MH). (1)

Theo định lý Pytago => b^2 = AC^2 = CK^2 + AK^2; CM^2 = CK^2 + MK^2.

=> 2.AC^2 - 2.CM^2 = 2(AK^2 - MK^2) = 2(AK - MK).(AK + MK) = 2.AM.(AK + MK). (2)

Từ  (1) + (2) => 2.AB^2 + 2.AC^2 - 2.BM^2 - 2.CM^2 = 2.AM(AH - MH) + 2.AM.(AK + MK).

=> 2.AB^2 + 2.AC^2 - 4.BM^2 = 2.AM.(AH - MH + AK + MK).

=> 2.AB^2 + 2.AC^2 - BC^2 = 2.AM.(2.AM).

=> 2.c^2 + 2.b^2 - a^2 = 4.AM^2.

Bạn thay phương trình 2.c^2 + 2.b^2 - a^2 = 4.AM^2 ở trên vào câu a để giải tiếp nhé. Mình chứng minh được gần hết rồi.

16 tháng 8 2020

Lưu ý là BH song song với CK (cả hai cùng vuông góc với AM)

Nên theo định lý Talet, ta có: BM = CM. => HM = KM.

Vừa nãy mình quên ghi vào, bạn thêm vào hộ mình nhé.

15 tháng 8 2020

mình nghĩ nên sửa đề là \(-\sqrt{a^2+b^2}\le a\cos\alpha+b\sin\alpha\le\sqrt{a^2+b^2}\)

với a,b,x,y là số thực ta luôn có \(\left(ax+by\right)^2=\left(a^2+b^2\right)\left(x^2+y^2\right)-\left(ay-bx\right)^2\)

từ đẳng thức này ta suy ra \(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)

dấu "=" xảy ra khi \(\left(ax-by\right)^2=0\)

trở lại bài toán ta luôn có \(\left(a\cos\alpha+b\sin\alpha\right)^2\le\left(a^2+b^2\right)\left(\cos^2\alpha+\sin^2\alpha\right)=a^2+b^2\)

từ đó ta có \(-\sqrt{a^2+b^2}\le a\cos\alpha+b\sin\alpha\le\sqrt{a^2+b^2}\)