28 phần 5x-23 phần 6 bằng 1 phần 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-\dfrac{5}{2}\) < \(\dfrac{3}{x}\) < \(\dfrac{2}{-3}\)
\(-\dfrac{30}{12}\) < \(\dfrac{30}{10x}\) < \(\dfrac{30}{-45}\)
-45 < 10x < -12
- \(\dfrac{9}{2}\) < x < - \(\dfrac{6}{5}\)
-4,5 < x < - 1,2
x ϵ { -4; -3; -2 }
\(\dfrac{4}{5}\left(\dfrac{2}{3}x-\dfrac{9}{5}\right)-\dfrac{2}{5}\cdot\dfrac{-3}{7}=\dfrac{15}{4}\)
\(\Rightarrow\dfrac{2}{5}\left(\dfrac{2}{3}x-\dfrac{9}{5}\right)-\dfrac{-6}{35}=\dfrac{15}{4}\)
\(\Rightarrow\dfrac{2}{5}\left(\dfrac{2}{3}x-\dfrac{9}{5}\right)+\dfrac{6}{35}=\dfrac{15}{4}\)
\(\Rightarrow\dfrac{2}{5}\left(\dfrac{2}{3}x-\dfrac{9}{5}\right)=\dfrac{15}{4}-\dfrac{6}{35}=\dfrac{501}{140}\)
\(\Rightarrow\dfrac{2}{3}x-\dfrac{9}{5}=\dfrac{501}{140}:\dfrac{2}{5}=\dfrac{501\cdot5}{28\cdot5\cdot2}=\dfrac{501}{56}\)
\(\Rightarrow\dfrac{2}{3}x=\dfrac{501}{56}+\dfrac{9}{5}=\dfrac{2001}{280}\)
\(\Rightarrow x=\dfrac{2001}{280}:\dfrac{2}{3}=\dfrac{2001\cdot3}{280\cdot2}=\dfrac{6003}{560}\)
Ta dùng thuật toán Euclid
1024:580 dư 444
=> ƯCLN(1024; 580)=ƯCLN(580; 444)
580:444 dư 136
=> ƯCLN(580; 444)=ƯCLN(444; 136)
444:136 dư 36
=> ƯCLN(444; 136)=ƯCLN(136; 36)
136:36 dư 28
=> ƯCLN(136; 36)=ƯCLN(36;28)
Ta có: 36=22.32
28=22.7
=> ƯCLN(36; 28)=ƯCLN(1024; 580)=22=4
Làm theo cách làm tương tự, ta có ƯCLN(690; 960)=60
\(\dfrac{-5}{12}.\dfrac{2}{11}+\dfrac{-5}{12}.\dfrac{9}{11}+\dfrac{5}{12}\)
\(=\dfrac{-5}{12}\left(\dfrac{2}{11}+\dfrac{9}{11}-1\right)\)
\(=\dfrac{-5}{12}\left(1-1\right)\)
\(=0\)
\(=\left(-67\right).\left(-33\right)-67.77+\left(-67\right).33-77.33\)
\(=\left[\left(-67\right).\left(-33\right)+\left(-67\right).33\right]-66.77-77.33\)
\(=-77\left(66+33\right)=-77.99=-7623\)
\(B=\dfrac{2^{19}\cdot27^3+15.4^9\cdot9^4}{6^9+2^{10}\cdot3^{10}}\)
\(\Rightarrow B=\dfrac{2^{19}\cdot\left(3^3\right)^3+3\cdot5\cdot4^9\cdot\left(3^2\right)^4}{2^3\cdot3^3+\left(2\cdot3\right)^{10}}\)
\(\Rightarrow B=\dfrac{2^{19}\cdot3^9+3\cdot5\cdot4^9\cdot3^8}{\left(2\cdot3\right)^3+\left(2\cdot3\right)^{10}}\)
\(\Rightarrow B=\dfrac{2^{19}\cdot3^9+5\cdot\left(2^2\right)^9\cdot3^9}{\left(2\cdot3\right)^{13}}\)
\(\Rightarrow B=\dfrac{2^{19}\cdot3^9+5\cdot2^{18}\cdot3^9}{2^{13}\cdot3^{13}}\)
\(\Rightarrow B=\dfrac{2\cdot\left(2^{18}\cdot3^9\right)+5\cdot\left(2^{18}\cdot3^9\right)}{2^{13}\cdot3^{13}}\)
\(\Rightarrow B=\dfrac{\left(2^{18}\cdot3^9\right)\cdot\left(2+5\right)}{2^{13}\cdot3^{13}}\)
\(\Rightarrow B=\dfrac{2^{18}\cdot3^9\cdot7}{2^{13}\cdot3^{13}}=\dfrac{2^{13}\cdot2^5\cdot3^9\cdot7}{2^{13}\cdot3^9\cdot3^4}\)
\(\Rightarrow B=\dfrac{2^5\cdot7}{3^4}\)
\(\dfrac{28}{5}\)x - \(\dfrac{23}{6}\)= \(\dfrac{1}{6}\)
\(\dfrac{28}{5}\)x = \(\dfrac{1}{6}\) + \(\dfrac{23}{6}\)
\(\dfrac{28}{5}\)x = 4
x = 4 : \(\dfrac{28}{5}\)
x = \(\dfrac{5}{7}\)