Cho hai biểu thức A = \(\frac{\sqrt{x}+2}{\sqrt{x}}\) và B = \(\frac{\sqrt{x}}{\sqrt{x}-2}\) với \(x>0;x\ne4\)
Tìm x thỏa mãn \(x\cdot\frac{A}{B}\le10\sqrt{x}-29-\sqrt{x-25}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PT\(\Leftrightarrow\hept{\begin{cases}x+1\ge0\\2x+\sqrt{6x^2+1}=\left(x+1\right)^2\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\\sqrt{6x^2+1}=x^2+1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge-1\\6x^2+1=\left(x^2+1\right)^2\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x^4-4x^2=0\end{cases}\Leftrightarrow}x=0;x=2}\)
a) \(\sqrt{2x+\sqrt{6x^2+1}}=x+1\)
\(\Leftrightarrow2x+\sqrt{6x^2+1}=x^2+2x+1\)
\(\Leftrightarrow\sqrt{6x^2+1}=x^2+1\)
\(\Leftrightarrow6x^2+1=x^4+2x^2+1\)
\(\Leftrightarrow x^4-4x^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)
\(B=x^5-x+7\)
\(B=x\left(x^4-1\right)+6+1\)
\(B=x\left(x^4-x^2+x^2-1\right)+6+1\)
\(B=x\left(x-1\right)\left(x+1\right)\left(x^2+1\right)+6+1\)
Ta có: \(x\left(x-1\right)\left(x+1\right)\left(x^2+1\right)+6\)chia hết cho 3
=> B chia 3 dư 1
=> B không phải là scp với mọi x thuộc Z+( đpcm )
\(B=\sqrt{7-2\sqrt{12}}\)
\(B=\sqrt{4-2.2.\sqrt{3}+3}\)
\(B=\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(B=\left|2-\sqrt{3}\right|\)
\(B=2-\sqrt{3}\)
a) N = \(\frac{x}{x-4}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)
N = \(\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
N = \(\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
N = \(\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
N = \(\frac{\sqrt{x}}{\sqrt{x}-2}\)
b) Với x \(\ge\)0; x \(\ne\)4
Ta có: N = \(\frac{1}{-3}\) <=> \(\frac{\sqrt{x}}{\sqrt{x}-2}=\frac{1}{-3}\)
=> \(-3\sqrt{x}=\sqrt{x}-2\)
<=> \(-4\sqrt{x}=-2\)
<=> \(\sqrt{x}=\frac{1}{2}\)
<=> \(x=\frac{1}{4}\)
c) x = 25 => N = \(\frac{\sqrt{25}}{\sqrt{25}-2}=\frac{5}{5-3}=\frac{5}{2}\)
a) \(N=\frac{x}{x-4}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)
\(N=\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(N=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(N=\frac{\left(\sqrt{x}+2\right)\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(N=\frac{\sqrt{x}}{\sqrt{x}-2}\)
b) \(N=-\frac{1}{3}\)
\(\Leftrightarrow\frac{\sqrt{x}}{\sqrt{x}-2}=-\frac{1}{3}\)
\(\Leftrightarrow3\sqrt{x}=2-\sqrt{x}\)
\(\Leftrightarrow4\sqrt{x}=2\)
\(\Leftrightarrow\sqrt{x}=\frac{1}{2}\Rightarrow x=\frac{1}{4}\)
c) \(N=\frac{\sqrt{25}}{\sqrt{25}-2}=\frac{5}{5-2}=\frac{5}{3}\)