P=( 1/x+1 + 1/x-1 ) : 2x/x-1
a, tìm x để P có nghĩa
b,rút gọn P
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(x\ge0\)
Đặt \(A=\frac{2011x-2\sqrt{x}+1}{\sqrt{x}}\)
\(=2011\sqrt{x}-2+\frac{1}{\sqrt{x}}\)
\(=2011\sqrt{x}+\frac{1}{\sqrt{x}}-2\)
Áp dụng BĐT AM - GM cho hai số dương ta có :
\(2011\sqrt{x}+\frac{1}{\sqrt{x}}\ge2\sqrt{2011\sqrt{x}\cdot\frac{1}{\sqrt{x}}}=2\sqrt{2011}\)
Do đó : \(A\ge2\left(\sqrt{2011}-1\right)\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2011}\)
Vậy \(A_{min}=2\left(\sqrt{2011}-1\right)\) khi \(x=\frac{1}{2011}\)
\(ĐK:x>0\)
Xét biểu thức\(\frac{2011x-2\sqrt{x}+1}{\sqrt{x}}=\frac{2011x-2\sqrt{x}+1}{\sqrt{x}}-2\left(\sqrt{2011}-1\right)+2\left(\sqrt{2011}-1\right)\)\(=\frac{2011x-2\sqrt{x}+1-2\sqrt{2011x}+2\sqrt{x}}{\sqrt{x}}+2\left(\sqrt{2011}-1\right)\)\(=\frac{\left(\sqrt{2011x}-1\right)^2}{\sqrt{x}}+2\left(\sqrt{2011}-1\right)\ge2\left(\sqrt{2011}-1\right)\)
\(\Rightarrow\frac{2011x-2\sqrt{x}+1}{\sqrt{x}}\ge2\left(\sqrt{2011}-1\right)\)
Đẳng thức xảy ra khi \(\sqrt{2011x}=1\Leftrightarrow2011x=1\Leftrightarrow x=\frac{1}{2011}\)
Vậy giá trị nhỏ nhất của biểu thức là \(2\left(\sqrt{2011}-1\right)\), đạt được khi \(x=\frac{1}{2011}\)
Bài làm:
Ta có: \(\left(x+3\right)\left(y+4\right)=3xy\)
\(\Leftrightarrow xy+4x+3y+12-3xy=0\)
\(\Leftrightarrow\left(4x-2xy\right)+\left(6-3y\right)=6\)
\(\Leftrightarrow2x\left(2-y\right)+3\left(2-y\right)=6\)
\(\Leftrightarrow\left(2x+3\right)\left(2-y\right)=6=6.1=\left(-6\right).\left(-1\right)=2.3=\left(-2\right).\left(-3\right)\)
Mà ta thấy \(2x+3\) lẻ với mọi x nguyên nên ta xét các TH sau:
+ \(\hept{\begin{cases}2x+3=1\\2-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=-4\end{cases}}\)
+ \(\hept{\begin{cases}2x+3=-1\\2-y=-6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=8\end{cases}}\)
+ \(\hept{\begin{cases}2x+3=3\\2-y=2\end{cases}\Rightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)
+ \(\hept{\begin{cases}2x+3=-3\\2-y=-2\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\y=4\end{cases}}\)
Vậy ta có 4 cặp số (x;y) thỏa mãn: ...
Phá tung ra thoi ạ
\(\Leftrightarrow xy+3y+4x+12=3xy\)
\(\Leftrightarrow4x-2xy-6+3y=-18\)
\(\Leftrightarrow2x\left(2-y\right)-3\left(2-y\right)=-18\)
\(\Leftrightarrow\left(2x-3\right)\left(2-y\right)=-18\)
~~ Lập bảng xét ước là xong :v
1) \(\left(5\sqrt{2}+2\sqrt{5}\right)\sqrt{5}-\sqrt{250}\)
\(=5\sqrt{10}-10-5\sqrt{10}\)
\(=-10\)
2) \(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)
\(=14-2\sqrt{21}-7+2\sqrt{21}\)
\(=7\)
3) \(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\) (hẳn đề là như thế này)
\(=33-3\sqrt{22}-11+3\sqrt{22}\)
\(=22\)
hải anh giải phương trình 2 nhé
Điều kiện xác định \(x\ge1\)
\(3\left(x^2-x+1\right)=\left(x+\sqrt{x-1}\right)^2\)
\(\Leftrightarrow3\left(x-\sqrt{x-1}\right)\left(x+\sqrt{x-1}\right)=\left(x+\sqrt{x-1}\right)^2\)
\(\Leftrightarrow\left(x+\sqrt{x-1}\right)\left(3x-3\sqrt{x-1}-x-\sqrt{x-1}\right)=0\)
\(\Leftrightarrow2\left(x+\sqrt{x-1}\right)\left(x-2\sqrt{x-1}\right)=0\)(vì x\(\ge\)1 nên \(x+\sqrt{x-1}\ne0\))
\(\Leftrightarrow x-1-2\sqrt{x-1}+1=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2=0\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x=2\)(thỏa mãn điều kiện xác định)
Vậy phương trình có nghiệm x=2
\(P=\left(\frac{1}{x+1}+\frac{1}{x-1}\right):\frac{2x}{x-1}\)
a) Điều kiện xác định:
\(\hept{\begin{cases}x+1\ne0\\x-1\ne0\\2x\ne0\end{cases}}\Rightarrow\hept{\begin{cases}x\ne0-1\\x\ne0+1\\x\ne0\end{cases}}\Rightarrow\hept{\begin{cases}x\ne-1\\x\ne1\\x\ne0\end{cases}}\)
Vậy để P có nghĩa thì \(x\ne-1;x\ne1\) và \(x\ne0.\)
b) Rút gọn:
\(P=\left(\frac{1}{x+1}+\frac{1}{x-1}\right):\frac{2x}{x-1}\)
\(P=\left(\frac{1.\left(x-1\right)}{\left(x-1\right).\left(x+1\right)}+\frac{1.\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}\right):\frac{2x}{x-1}\)
\(P=\left(\frac{x-1}{\left(x-1\right).\left(x+1\right)}+\frac{x+1}{\left(x-1\right).\left(x+1\right)}\right):\frac{2x}{x-1}\)
\(P=\left(\frac{x-1+x+1}{\left(x-1\right).\left(x+1\right)}\right):\frac{2x}{x-1}\)
\(P=\frac{2x}{\left(x-1\right).\left(x+1\right)}:\frac{2x}{x-1}\)
\(P=\frac{2x}{\left(x-1\right).\left(x+1\right)}.\frac{x-1}{2x}\)
\(P=\frac{2x.\left(x-1\right)}{2x.\left(x-1\right).\left(x+1\right)}\)
\(P=\frac{1}{x+1}.\)