Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H E F
a, Xét tam giác ABH và tam giác AHE ta có :
^AHB = ^AEH = 900
^A _ chung
Vậy tam giác ABH ~ tam giác AHE ( g.g )
\(\Rightarrow\frac{AB}{AH}=\frac{AH}{AE}\Rightarrow AH^2=AB.AE\)
a)9x2 - 3 = ( 3x + 1 )( 2x - 3 )
<=> 9x2 - 3 = 6x2 - 7x - 3
<=> 3x2 + 7x = 0
<=> x( 3x + 7 ) = 0
<=> x = 0 hoặc x = -7/3
b) 6x2 - 13x + 6 = 0
<=> 6x2 - 9x - 4x + 6 = 0
<=> 3x( 2x - 3 ) - 2( 2x - 3 ) = 0
<=> ( 2x - 3 )( 3x - 2 ) = 0
<=> x = 3/2 hoặc x = 2/3
c) \(\frac{3}{x-1}=\frac{3x+2}{1-x^2}-\frac{4}{x+1}\)( ĐKXĐ : x ≠ ±1 )
<=> \(\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{-3x-2}{\left(x-1\right)\left(x+1\right)}-\frac{4\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)
=> 3x + 3 = -3x - 2 - 4x + 4
<=> 10x = -1 <=> x = -1/10 (tm)
a, \(9x^2-3=\left(3x+1\right)\left(2x-3\right)\Leftrightarrow9x^2-3=6x^2-9x+2x-3\)
\(\Leftrightarrow9x^2-3=6x^2-7x-3\Leftrightarrow3x^2+7x=0\Leftrightarrow x\left(3x+7\right)=0\Leftrightarrow x=0;x=-\frac{7}{3}\)
Vậy tập nghiệm của phương trình là S = { -7/3 ; 0 }
b, \(6x^2-13x+6=0\Leftrightarrow\left(3x-2\right)\left(2x-3\right)=0\Leftrightarrow x=\frac{2}{3};x=\frac{3}{2}\)
Vậy tập nghiệm của phương trình là S = { 2/3 ; 3/2 }
c, \(\frac{3}{x-1}=\frac{3x+2}{1-x^2}-\frac{4}{x+1}ĐK:x\ne\pm1\)
\(\Leftrightarrow\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{-3x-2}{\left(x-1\right)\left(x+1\right)}-\frac{4\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow3x+3=-3x-2-4x+4\Leftrightarrow3x+3=-7x+2\)
\(\Leftrightarrow10x=-1\Leftrightarrow x=-\frac{1}{10}\)Vậy tập nghiệm của phương trình là S = { -1/10 }
a4 + a3 + a + 1 ≥ 0
<=> a3( a + 1 ) + ( a + 1 ) ≥ 0
<=> ( a + 1 )( a3 + 1 ) ≥ 0
<=> ( a + 1 )2( a2 - a + 1 ) ≥ 0 ( đúng )
Vậy ta có đpcm. Dấu "=" xảy ra <=> a = -1
Ta có: \(a^4+a^3+a+1\)
\(=a^3\left(a+1\right)+\left(a+1\right)\)
\(=\left(a+1\right)\left(a^3+1\right)\)
\(=\left(a+1\right)\left(a+1\right)\left(a^2-a+1\right)\)
\(=\left(a+1\right)^2\left[\left(a^2-a+\frac{1}{4}\right)+\frac{3}{4}\right]\)
\(=\left(a+1\right)^2\left[\left(a-\frac{1}{2}\right)^2+\frac{3}{4}\right]\ge0\left(\forall a\right)\) (luôn đúng)
Dấu "=" xảy ra khi: a = -1