viết các phân số bằng phân số 1/3 sao cho mỗi phân số có tử số lẻ bé hơn 10?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
9h kém 5p=8h55p
8h55p-8h25p=30p=0,5 giờ
Sau 0,5 giờ, xe máy đi được:
30x0,5=15(km)
Hiệu vận tốc hai xe là 50-30=20(km/h)
Hai xe gặp nhau sau khi ô tô đi được:
15:20=0,75(giờ)=45p
Ô tô đuổi kịp xe máy lúc:
8h55p+45p=9h40p
a: Số tập hợp con có 1 phần tử của P là \(C^1_4=4\left(tậphợp\right)\)
{1};{3};{6};{8}
b: Số tập hợp con có 3 phần tử của P là \(C^3_4=4\)(tập hợp)
Các tập hợp đó là {1;3;6}; {1;3;8}; {1;6;8}; {3;6;8}
c: Số tập hợp con của P là \(2^4=16\)(tập hợp)
Ta có: GH//JI
=>\(\widehat{JGH}+\widehat{GJI}=180^0\)(hai góc trong cùng phía)
=>\(\widehat{JGH}=180^0-90^0=90^0\)
ta có: GH//JI
=>\(\widehat{HIJ}=\widehat{xHI}\)(hai góc so le trong)
=>\(\widehat{HIJ}=47^0\)
\(x^2\left(x-2\right)+3\left(x-2\right)=0\)
=>\(\left(x-2\right)\left(x^2+3\right)=0\)
mà \(x^2+3>=3>0\forall x\)
nên x-2=0
=>x=2
a: Xét ΔMNQ có
NE,MF là các đường cao
NE cắt MF tại H
Do đó: H là trực tâm của ΔMNQ
=>QH\(\perp\)MN tại D
Xét `ΔMQN` có:
Đường cao `NE` và `MF` cắt nhau tại H
`=> H` là trực tâm của `ΔMQN`
`=> QD` là đường cao của `ΔMQN` (đi qua H)
`=> QH ⊥ MN` tại `D`
Sửa đề:
`S = 1/3 + 2/(3^2) + 3/(3^3) + ... + 100/(3^100)`
`3S = 1 + 2/3 + 3/(3^2) + ... + 100/(3^99)`
`3S - S = 1 - 100/3^100 + (2/3 - 1/3) + (3/(3^2) - 2/(3^2)) + ... + (100/(3^99) - 99/(3^99)) `
`2S = 1 - 100/(3^100) + 1/3 + 1/(3^2) + ... + 1/(3^99) `
Đặt `A = 1/3 + 1/(3^2) + ... + 1/(3^99) `
`=> 3A = 1 + 1/3 + ... + 1/(3^98) `
`=> 3A - A = (1 + 1/3 + ... + 1/(3^98)) - ( 1/3 + 1/(3^2) + ... + 1/(3^99) )`
`=> 2A = 1 - 1/(3^99)`
`=> A = (1 - 1/(3^99))/2`
Khi đó: `2S = 1 - 100/(3^100) + (1 - 1/(3^99))/2`
`S = 1/2 - 100/(2.3^100) + (1 - 1/(3^99))/4`
Ta có: `{(1/2 - 100/(2.3^100) < 1/2),((1 - 1/(3^99))/4 < 1/4):}`
`=> 1/2 - 100/(2.3^100) + (1 - 1/(3^99))/4 < 1/2 + 1/4 = 3/4`
Hay `S < 3/4 (đpcm)`
Ông An cao 180 cm, vòng bụng 108 cm.
Ông Chung cao 160 cm, vòng bụng 70 cm.
Với mọi x;y dương ta có:
\(x^2+xy+y^2=\dfrac{3}{4}\left(x^2+2xy+y^2\right)+\dfrac{1}{4}\left(x^2-2xy+y^2\right)\)
\(=\dfrac{3}{4}\left(x+y\right)^2+\dfrac{1}{4}\left(x-y\right)^2\ge\dfrac{3}{4}\left(x+y\right)^2\)
Áp dụng:
\(P\ge\sqrt{\dfrac{3}{4}\left(a+b\right)^2}+\sqrt{\dfrac{3}{4}\left(b+c\right)^2}+\sqrt{\dfrac{3}{4}\left(c+a\right)^2}\)
\(P\ge\dfrac{\sqrt{3}}{2}\left(a+b\right)+\dfrac{\sqrt{3}}{2}\left(b+c\right)+\dfrac{\sqrt{3}}{2}\left(c+a\right)\)
\(P\ge\sqrt{3}\left(a+b+c\right)=\sqrt{3}\)
\(P_{min}=\sqrt{3}\) khi \(a=b=c=\dfrac{1}{3}\)
`1/3 = 2/6 = 3/9 = 4/12 = 5/15 = 6/18 = 7/21 = 8/24 = 9/27`
Ta có:
\(\dfrac{1}{3}=\dfrac{2}{6}=\dfrac{3}{9}=\dfrac{4}{12}=\dfrac{5}{15}=\dfrac{6}{18}=\dfrac{7}{21}=\dfrac{8}{24}=\dfrac{9}{27}\)