K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)

Tương tự các vế còn lại ta có

\(VT\ge a+b+c-\frac{ab+bc+ca}{2}\ge3-\frac{3}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=1

20 tháng 9 2020

Tóm tắt:

v1=20km/h

v2=25km/h

a, v3=?km/h

b, AB=? km

Giải:

a, Cho điểm gặp nhau giữa 2 người thứ 2 và thứ 3 là C:

Lúc thời lúc ở C là:

9h + 45'p= 9h45'p= 9,75h

Đổi 8h30'p= 8,5h

Người thứ 2 có thời gian đi trong AC là:

t2=9,75−8,5=1,25h

Quãng đường AC dài là:

AC=1,25.25=31,25km(1)

0,75.v3=31,25

⇒v3=41,7km

b, Thời gian người thứ 3 cách A lúc 9h45'p là:

9h45'p −− 8h= 9,75- 8= 1,75 h

Lúc 9h45'p người thứ nhất cách A số km là:

AD=v1.1,75=35km

Lúc 9h45'p người thứ nhất và người thứ 3 cách nhau là:

CD= 35−31,25=3,75km(2)

Vì người thứ ba đang ở điểm C và người thứ nhất đang ở điểm D ( 9h45'p) mà thời gian đến B cùng lúc:

⇒t1CB=t3DB

⇒CB/v3=DB/v1

⇒3,75+DB/41,7=DB/20

⇒(3,75+DB).20=41,7.DB

⇒75+DB.20=41,7.DB

⇒75=41,7.DB−DB.20

75=DB.(41,7−20)

⇒75=DB.21,7

⇒DB≈3,5km(3)

Từ (1) , (2) và (3)

⇒⎧⎩⎨⎪⎪AB=AC+CD+DBAB=31,24+3,75+3,5AB=38,5km

19 tháng 9 2020

Hình bình hành là tứ giác nội tiếp => Hai góc đối có tổng bằng 180 độ

Như đã biết thì hai góc đối của hình bình hành bằng nhau

=> Mỗi góc đối bằng 90 độ

Dễ dàng tính được hai góc còn lại cũng bằng 90 độ

Vậy suy ra hình bình hành mà là tứ giác nội tiếp là hình chữ nhật.

19 tháng 9 2020

Hình bình hành không phải là 1 tứ giác nội tiếp nên nói không phải mê tín chứ đề sai

20 tháng 9 2020

\(ĐK:x>0\)

Ta có: \(B=\sqrt{x}+\frac{1}{\sqrt{x}}\Rightarrow2B=2\sqrt{x}+\frac{2}{\sqrt{x}}\)

\(2B=2\sqrt{x}+5\Leftrightarrow2\sqrt{x}+\frac{2}{\sqrt{x}}=2\sqrt{x}+5\Leftrightarrow\frac{2}{\sqrt{x}}=5\Leftrightarrow5\sqrt{x}=2\Leftrightarrow\sqrt{x}=\frac{2}{5}\Leftrightarrow x=\frac{4}{25}\)(t/m điều kiện)

Vậy x = 4/25

20 tháng 9 2020

\(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\Rightarrow ab+bc+ca=1\)

\(\Rightarrow P\ge\frac{2a}{\sqrt{1+a^2}}+\frac{2b}{\sqrt{1+b^2}}+\frac{2c}{\sqrt{1+c^2}}\)

Áp dụng BĐT AM-GM: \(P=\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+c\right)\left(b+a\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

\(\le a\left(\frac{1}{a+b}+\frac{1}{a+c}\right)+b\left(\frac{1}{4\left(a+b\right)}+\frac{1}{a-b}\right)-c\left(\frac{1}{4\left(b+c\right)}+\frac{1}{a-c}\right)=\frac{9}{4}\)

Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(\frac{\sqrt{15}}{7};\sqrt{15};\sqrt{15}\right)\)

19 tháng 9 2020

\(VT=\left(a+\frac{1}{9b}+\frac{1}{9b}+...+\frac{1}{9b}\right)\left(b+\frac{1}{9c}+\frac{1}{9c}+...+\frac{1}{9c}\right)\left(c+\frac{1}{9a}+\frac{1}{9a}+...+\frac{1}{9a}\right)\)

Lưu ý: Đã tách các số \(\frac{1}{b};\frac{1}{c};\frac{1}{a}\)trong ngoặc thành 9 số hạng bằng nhau

Áp dụng AM-GM:

\(VT\ge10\sqrt[10]{a\left(\frac{1}{9b}\right)^9}.10\sqrt[10]{b\left(\frac{1}{9c}\right)^9}.10\sqrt[10]{c\left(\frac{1}{9a}\right)^9}\)

\(=10^3\sqrt[10]{abc\left(\frac{1}{9a}.\frac{1}{9b}.\frac{1}{9c}\right)^9}\)\(=10^3\sqrt[10]{\frac{abc}{\left(9^3\right)^9.\left(abc\right)^9}}\)\(=10^3\sqrt[10]{\frac{1}{9^{27}.a^8b^8c^8}}\)

\(=\frac{10^3}{\sqrt[10]{9^{27}.a^8b^8c^8}}\)\(=\frac{10^3}{\sqrt[10]{9^{15}.\left(3a\right)^8\left(3b\right)^8\left(3c\right)^8}}=\frac{10^3}{3^3\sqrt[10]{\left(3a.3b.3c\right)^8}}\)

\(\ge\frac{10^3}{3^3\sqrt[10]{\left(\frac{3a+3b+3c}{3}\right)^8}}=\frac{10^3}{3^3\sqrt[10]{\left(\frac{3\left(a+b+c\right)}{3}\right)^8}}=\frac{10^3}{3^3}\left(đpcm\right)\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)

\(A=\left(a+\frac{1}{b}\right)\left(b+\frac{1}{c}\right)\left(c+\frac{1}{a}\right)=abc+\frac{1}{abc}+a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

BĐT Cauchy cho 3 số dương: \(a+b+c\ge3\sqrt[3]{abc}\Leftrightarrow1\ge3\sqrt[3]{abc}\Leftrightarrow abc\le\frac{1}{27}\Leftrightarrow\frac{1}{abc}\ge27\)

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.\frac{3}{\sqrt[3]{abc}}=9\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)

BĐT Cauchy cho 2 số dương: \(abc+\frac{1}{729abc}\ge2\sqrt{abc.\frac{1}{27^2abc}}=\frac{2}{27}\)

Biến đổi A thêm 1 tí nữa: \(A=\left(abc+\frac{1}{729abc}\right)+\frac{728}{729}.\frac{1}{abc}+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+1\)

Thế toàn bộ các BĐT vừa tìm được ở trên vào A:

\(A\ge\frac{2}{27}+\frac{728}{729}.27+9+1=\frac{1000}{27}=\left(\frac{10}{3}\right)^2\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

19 tháng 9 2020

ĐKXĐ: \(x >=0 \)

Phương trình đã cho tương đương với: 
\(2x+2\sqrt{x^2+3x}+2\sqrt{x}+2\sqrt{x+3}=12\)

\(x+2\sqrt{x\left(x+3\right)}+x+3+2\left(\sqrt{x}+\sqrt{x+3}\right)\)

\(\left(\sqrt{x}+\sqrt{x+3}\right)^2+2\left(\sqrt{x}+\sqrt{x+3}\right)-15=0\)
Đặt \(\sqrt{x}+\sqrt{x+3}=a\left(a>=0\right)\)
     Từ đó ta có: \(a^2+2a-15=0\)
      tự giải đi ha

Nghiệm \(x=1\)

19 tháng 9 2020

\(=\frac{\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}}\)

\(=\frac{\sqrt{3}+1-\sqrt{3}+1}{\sqrt{2}}\)

\(=\frac{2}{\sqrt{2}}\)

\(=\sqrt{2}\)

19 tháng 9 2020

Đặt \(A=\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)

Ta có: \(A=\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)

    \(\Leftrightarrow A\sqrt{2}=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)

    \(\Leftrightarrow A\sqrt{2}=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)

    \(\Leftrightarrow A\sqrt{2}=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)

    \(\Leftrightarrow A\sqrt{2}=\sqrt{3}+1-\sqrt{3}+1\)

    \(\Leftrightarrow A\sqrt{2}=2\)

    \(\Leftrightarrow A=\sqrt{2}\)

19 tháng 9 2020

Dễ hiểu với cách xét bài toán phụ sau:

Với \(a+b+c=0\) và a,b,c khác 0

Ta có: \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

Thật vậy, ta CM như sau:

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\cdot\frac{a+b+c}{abc}\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\cdot\frac{0}{abc}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

=> BT được chứng minh

Áp dụng vào bài chính, ta được:

\(\sqrt{1^2+\frac{1}{1^2}+\frac{1}{2^2}}=\sqrt{\frac{1}{1^2}+\frac{1}{1^2}+\frac{1}{\left(-2\right)^2}}=\sqrt{\left(\frac{1}{1}+\frac{1}{1}-\frac{1}{2}\right)^2}=1+1-\frac{1}{2}\)

Tương tự:

\(\sqrt{1^2+\frac{1}{2^2}+\frac{1}{3^2}}=1+\frac{1}{2}-\frac{1}{3}\)

...

\(\sqrt{1+\frac{1}{99^2}+\frac{1}{100^2}}=1+\frac{1}{99}-\frac{1}{100}\)

Cộng vế lại ta được:

\(BT=1+1-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{99}-\frac{1}{100}\)

\(=100-\frac{1}{100}=99,99\)

Bài ezzz =))))

\(VT=\frac{\frac{1}{a^2}}{a\left(b+c\right)}+\frac{\frac{1}{b^2}}{b\left(c+a\right)}+\frac{\frac{1}{c^2}}{c\left(a+b\right)}\)

Áp dụng bđt Bunhiacopski ta có

\(VT\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\ge\frac{3\sqrt[3]{a^2b^2c^2}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=1

28 tháng 9 2020

cách 2 . đặt ẩn phụ nhé bro

Đặt \(\left\{\frac{1}{a};\frac{1}{b};\frac{1}{c}\right\}\rightarrow\left\{x;y;z\right\}\)\(\Rightarrow xyz=1\), khi đó :

Bất đẳng thức cần chứng minh tương đương :\(\frac{1}{\left(\frac{1}{x}\right)^2\left(\frac{1}{y}+\frac{1}{z}\right)}+\frac{1}{\left(\frac{1}{y}\right)^2\left(\frac{1}{z}+\frac{1}{x}\right)}+\frac{1}{\left(\frac{1}{z}\right)^2\left(\frac{1}{x}+\frac{1}{y}\right)}\ge\frac{3}{2}\)

\(< =>\frac{x^3yz}{y+z}+\frac{xy^3z}{z+x}+\frac{xyz^3}{x+y}\ge\frac{3}{2}< =>\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{3}{2}\)

Sử dụng bất đẳng thức AM-GM ta có : \(\left(\frac{x^2}{y+z}+\frac{y+z}{4}\right)+\left(\frac{y^2}{x+z}+\frac{x+z}{4}\right)+\left(\frac{z^2}{x+y}+\frac{x+y}{4}\right)\ge2\sqrt{\frac{x^2}{4}}+2\sqrt{\frac{y^2}{4}}+2\sqrt{\frac{z^2}{4}}=\frac{2x}{2}+\frac{2y}{2}+\frac{2z}{2}=x+y+z\)

Suy ra :\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}+\frac{x+y+y+z+z+x}{4}\ge x+y+z< =>\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}\)

Theo đánh giá của AM-GM thì : \(\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)Từ đó ta suy ra được :

 \(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}\ge\frac{3}{2}\left(đpcm\right)\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1< =>a=b=c=1\)