Cho a+b+c=3. Chứng minh:\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tóm tắt:
v1=20km/h
v2=25km/h
a, v3=?km/h
b, AB=? km
Giải:
a, Cho điểm gặp nhau giữa 2 người thứ 2 và thứ 3 là C:
Lúc thời lúc ở C là:
9h + 45'p= 9h45'p= 9,75h
Đổi 8h30'p= 8,5h
Người thứ 2 có thời gian đi trong AC là:
t2=9,75−8,5=1,25h
Quãng đường AC dài là:
AC=1,25.25=31,25km(1)
0,75.v3=31,25
⇒v3=41,7km
b, Thời gian người thứ 3 cách A lúc 9h45'p là:
9h45'p −− 8h= 9,75- 8= 1,75 h
Lúc 9h45'p người thứ nhất cách A số km là:
AD=v1.1,75=35km
Lúc 9h45'p người thứ nhất và người thứ 3 cách nhau là:
CD= 35−31,25=3,75km(2)
Vì người thứ ba đang ở điểm C và người thứ nhất đang ở điểm D ( 9h45'p) mà thời gian đến B cùng lúc:
⇒t1CB=t3DB
⇒CB/v3=DB/v1
⇒3,75+DB/41,7=DB/20
⇒(3,75+DB).20=41,7.DB
⇒75+DB.20=41,7.DB
⇒75=41,7.DB−DB.20
75=DB.(41,7−20)
⇒75=DB.21,7
⇒DB≈3,5km(3)
Từ (1) , (2) và (3)
⇒⎧⎩⎨⎪⎪AB=AC+CD+DBAB=31,24+3,75+3,5AB=38,5km
Hình bình hành là tứ giác nội tiếp => Hai góc đối có tổng bằng 180 độ
Như đã biết thì hai góc đối của hình bình hành bằng nhau
=> Mỗi góc đối bằng 90 độ
Dễ dàng tính được hai góc còn lại cũng bằng 90 độ
Vậy suy ra hình bình hành mà là tứ giác nội tiếp là hình chữ nhật.
Hình bình hành không phải là 1 tứ giác nội tiếp nên nói không phải mê tín chứ đề sai
\(ĐK:x>0\)
Ta có: \(B=\sqrt{x}+\frac{1}{\sqrt{x}}\Rightarrow2B=2\sqrt{x}+\frac{2}{\sqrt{x}}\)
\(2B=2\sqrt{x}+5\Leftrightarrow2\sqrt{x}+\frac{2}{\sqrt{x}}=2\sqrt{x}+5\Leftrightarrow\frac{2}{\sqrt{x}}=5\Leftrightarrow5\sqrt{x}=2\Leftrightarrow\sqrt{x}=\frac{2}{5}\Leftrightarrow x=\frac{4}{25}\)(t/m điều kiện)
Vậy x = 4/25
\(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\Rightarrow ab+bc+ca=1\)
\(\Rightarrow P\ge\frac{2a}{\sqrt{1+a^2}}+\frac{2b}{\sqrt{1+b^2}}+\frac{2c}{\sqrt{1+c^2}}\)
Áp dụng BĐT AM-GM: \(P=\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+c\right)\left(b+a\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)
\(\le a\left(\frac{1}{a+b}+\frac{1}{a+c}\right)+b\left(\frac{1}{4\left(a+b\right)}+\frac{1}{a-b}\right)-c\left(\frac{1}{4\left(b+c\right)}+\frac{1}{a-c}\right)=\frac{9}{4}\)
Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(\frac{\sqrt{15}}{7};\sqrt{15};\sqrt{15}\right)\)
\(VT=\left(a+\frac{1}{9b}+\frac{1}{9b}+...+\frac{1}{9b}\right)\left(b+\frac{1}{9c}+\frac{1}{9c}+...+\frac{1}{9c}\right)\left(c+\frac{1}{9a}+\frac{1}{9a}+...+\frac{1}{9a}\right)\)
Lưu ý: Đã tách các số \(\frac{1}{b};\frac{1}{c};\frac{1}{a}\)trong ngoặc thành 9 số hạng bằng nhau
Áp dụng AM-GM:
\(VT\ge10\sqrt[10]{a\left(\frac{1}{9b}\right)^9}.10\sqrt[10]{b\left(\frac{1}{9c}\right)^9}.10\sqrt[10]{c\left(\frac{1}{9a}\right)^9}\)
\(=10^3\sqrt[10]{abc\left(\frac{1}{9a}.\frac{1}{9b}.\frac{1}{9c}\right)^9}\)\(=10^3\sqrt[10]{\frac{abc}{\left(9^3\right)^9.\left(abc\right)^9}}\)\(=10^3\sqrt[10]{\frac{1}{9^{27}.a^8b^8c^8}}\)
\(=\frac{10^3}{\sqrt[10]{9^{27}.a^8b^8c^8}}\)\(=\frac{10^3}{\sqrt[10]{9^{15}.\left(3a\right)^8\left(3b\right)^8\left(3c\right)^8}}=\frac{10^3}{3^3\sqrt[10]{\left(3a.3b.3c\right)^8}}\)
\(\ge\frac{10^3}{3^3\sqrt[10]{\left(\frac{3a+3b+3c}{3}\right)^8}}=\frac{10^3}{3^3\sqrt[10]{\left(\frac{3\left(a+b+c\right)}{3}\right)^8}}=\frac{10^3}{3^3}\left(đpcm\right)\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)
\(A=\left(a+\frac{1}{b}\right)\left(b+\frac{1}{c}\right)\left(c+\frac{1}{a}\right)=abc+\frac{1}{abc}+a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
BĐT Cauchy cho 3 số dương: \(a+b+c\ge3\sqrt[3]{abc}\Leftrightarrow1\ge3\sqrt[3]{abc}\Leftrightarrow abc\le\frac{1}{27}\Leftrightarrow\frac{1}{abc}\ge27\)
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.\frac{3}{\sqrt[3]{abc}}=9\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
BĐT Cauchy cho 2 số dương: \(abc+\frac{1}{729abc}\ge2\sqrt{abc.\frac{1}{27^2abc}}=\frac{2}{27}\)
Biến đổi A thêm 1 tí nữa: \(A=\left(abc+\frac{1}{729abc}\right)+\frac{728}{729}.\frac{1}{abc}+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+1\)
Thế toàn bộ các BĐT vừa tìm được ở trên vào A:
\(A\ge\frac{2}{27}+\frac{728}{729}.27+9+1=\frac{1000}{27}=\left(\frac{10}{3}\right)^2\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
ĐKXĐ: \(x >=0 \)
Phương trình đã cho tương đương với:
\(2x+2\sqrt{x^2+3x}+2\sqrt{x}+2\sqrt{x+3}=12\)
\(x+2\sqrt{x\left(x+3\right)}+x+3+2\left(\sqrt{x}+\sqrt{x+3}\right)\)
\(\left(\sqrt{x}+\sqrt{x+3}\right)^2+2\left(\sqrt{x}+\sqrt{x+3}\right)-15=0\)
Đặt \(\sqrt{x}+\sqrt{x+3}=a\left(a>=0\right)\)
Từ đó ta có: \(a^2+2a-15=0\)
tự giải đi ha
Nghiệm \(x=1\)
\(=\frac{\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}}\)
\(=\frac{\sqrt{3}+1-\sqrt{3}+1}{\sqrt{2}}\)
\(=\frac{2}{\sqrt{2}}\)
\(=\sqrt{2}\)
Đặt \(A=\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)
Ta có: \(A=\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)
\(\Leftrightarrow A\sqrt{2}=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
\(\Leftrightarrow A\sqrt{2}=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
\(\Leftrightarrow A\sqrt{2}=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(\Leftrightarrow A\sqrt{2}=\sqrt{3}+1-\sqrt{3}+1\)
\(\Leftrightarrow A\sqrt{2}=2\)
\(\Leftrightarrow A=\sqrt{2}\)
Dễ hiểu với cách xét bài toán phụ sau:
Với \(a+b+c=0\) và a,b,c khác 0
Ta có: \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
Thật vậy, ta CM như sau:
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\cdot\frac{a+b+c}{abc}\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\cdot\frac{0}{abc}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
=> BT được chứng minh
Áp dụng vào bài chính, ta được:
\(\sqrt{1^2+\frac{1}{1^2}+\frac{1}{2^2}}=\sqrt{\frac{1}{1^2}+\frac{1}{1^2}+\frac{1}{\left(-2\right)^2}}=\sqrt{\left(\frac{1}{1}+\frac{1}{1}-\frac{1}{2}\right)^2}=1+1-\frac{1}{2}\)
Tương tự:
\(\sqrt{1^2+\frac{1}{2^2}+\frac{1}{3^2}}=1+\frac{1}{2}-\frac{1}{3}\)
...
\(\sqrt{1+\frac{1}{99^2}+\frac{1}{100^2}}=1+\frac{1}{99}-\frac{1}{100}\)
Cộng vế lại ta được:
\(BT=1+1-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{99}-\frac{1}{100}\)
\(=100-\frac{1}{100}=99,99\)
Bài ezzz =))))
\(VT=\frac{\frac{1}{a^2}}{a\left(b+c\right)}+\frac{\frac{1}{b^2}}{b\left(c+a\right)}+\frac{\frac{1}{c^2}}{c\left(a+b\right)}\)
Áp dụng bđt Bunhiacopski ta có
\(VT\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\ge\frac{3\sqrt[3]{a^2b^2c^2}}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi a=b=c=1
cách 2 . đặt ẩn phụ nhé bro
Đặt \(\left\{\frac{1}{a};\frac{1}{b};\frac{1}{c}\right\}\rightarrow\left\{x;y;z\right\}\)\(\Rightarrow xyz=1\), khi đó :
Bất đẳng thức cần chứng minh tương đương :\(\frac{1}{\left(\frac{1}{x}\right)^2\left(\frac{1}{y}+\frac{1}{z}\right)}+\frac{1}{\left(\frac{1}{y}\right)^2\left(\frac{1}{z}+\frac{1}{x}\right)}+\frac{1}{\left(\frac{1}{z}\right)^2\left(\frac{1}{x}+\frac{1}{y}\right)}\ge\frac{3}{2}\)
\(< =>\frac{x^3yz}{y+z}+\frac{xy^3z}{z+x}+\frac{xyz^3}{x+y}\ge\frac{3}{2}< =>\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{3}{2}\)
Sử dụng bất đẳng thức AM-GM ta có : \(\left(\frac{x^2}{y+z}+\frac{y+z}{4}\right)+\left(\frac{y^2}{x+z}+\frac{x+z}{4}\right)+\left(\frac{z^2}{x+y}+\frac{x+y}{4}\right)\ge2\sqrt{\frac{x^2}{4}}+2\sqrt{\frac{y^2}{4}}+2\sqrt{\frac{z^2}{4}}=\frac{2x}{2}+\frac{2y}{2}+\frac{2z}{2}=x+y+z\)
Suy ra :\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}+\frac{x+y+y+z+z+x}{4}\ge x+y+z< =>\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}\)
Theo đánh giá của AM-GM thì : \(\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)Từ đó ta suy ra được :
\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}\ge\frac{3}{2}\left(đpcm\right)\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1< =>a=b=c=1\)
\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)
Tương tự các vế còn lại ta có
\(VT\ge a+b+c-\frac{ab+bc+ca}{2}\ge3-\frac{3}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi a=b=c=1