so sánh A=\(\dfrac{1}{2^2}\)+\(\dfrac{1}{4^2}\)+\(\dfrac{1}{6^2}\)+...\(\dfrac{1}{\left(2n\right)^2}\)với \(\dfrac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2021 + \(\dfrac{3}{(3+\dfrac{3}{3-x})}\) = 2023
\(\dfrac{3}{(3+\dfrac{3}{3-x})}\) = 2023 - 2021
\(\dfrac{3}{(3+\dfrac{3}{3-x})}\) = 2
3 + \(\dfrac{3}{3-x}\) = \(\dfrac{3}{2}\)
\(\dfrac{3}{3-x}\) = \(\dfrac{3}{2}\) - 3
\(\dfrac{3}{3-x}\) = - \(\dfrac{3}{2}\)
3 - \(x\) = 3 : ( -\(\dfrac{3}{2}\))
3 - \(x\) = -2
\(x\) = 3 - ( -2)
\(x\) = 5
Vậy \(x\) = 5
( \(\dfrac{2}{123}\) + \(\dfrac{2023}{2022}\) )( \(\dfrac{1}{3}\) - \(\dfrac{1}{5}\) - \(\dfrac{2}{15}\))
=( \(\dfrac{2}{123}\) + \(\dfrac{2023}{2022}\) )( \(\dfrac{5}{15}\) - \(\dfrac{3}{15}\) - \(\dfrac{2}{15}\))
=( \(\dfrac{2}{123}\) + \(\dfrac{2023}{2022}\))( \(\dfrac{5-3-2}{15}\))
=( \(\dfrac{1}{123}\) + \(\dfrac{2023}{2022}\)). \(\dfrac{0}{15}\)
= ( \(\dfrac{1}{123}+\dfrac{2023}{2022}\)).0
= 0
\(x+xy+y=1\)
\(2x+2xy+2y=2\)
\(2x\left(1+y\right)+2y=2\)
\(2x\left(y+1\right)+2y+2=4\)
\(2x\left(y+1\right)+2\left(y+1\right)=4\)
\(\left(2x+2\right)\left(y+1\right)=4\)
\(2\left(x+1\right)\left(y+1\right)=4\)
\(\left(x+1\right)\left(y+1\right)=2\)
\(TH1:\left\{{}\begin{matrix}x+1=1\\y+1=2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)
\(TH2:\left\{{}\begin{matrix}x+1=2\\y+1=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
\(TH3:\left\{{}\begin{matrix}x+1=-1\\y+1=-2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=-2\\y=-3\end{matrix}\right.\)
\(TH4:\left\{{}\begin{matrix}x+1=-2\\y+1=-1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)
\(Vậy...\)
x+xy+y=1⇔x(y+1)+y+1=2⇔(x+1)(y+1)=2
⇒(x+1;y+1)=(-1;-2),(-2;-1),(1;2),(2;1)
sau tự tính nhé :3
Lời giải:
$2^x+2^{x+1}+2^{x+2}+...+2^{x+2019}=2^{x+2023}-8$
$2^x(1+2+2^2+...+2^{2019})=2^{x+2023}-8$
Xét:
$A=1+2+2^2+...+2^{2019}$
$2A=2+2^2+2^3+...+2^{2020}$
$\Rightarrow A=2A-A=2^{2020}-1$
Khi đó:
$2^x.A=2^{x+2023}-8$
$2^x(2^{2020}-1)=2^{x+2023}-2^3$
$2^x(2^{2023}-2^{2020}+1)-2^3=0$
$2^x(2^{2020}.7+1)=2^3$
$x$ ra số sẽ khá xấu. Bạn coi lại.
\(2ab-a+b=3\)
\(4ab-2a+2b=6\)
\(2a\left(2b-1\right)+2b=6\)
\(2a\left(2b-1\right)+\left(2b-1\right)=7\)
\(\left(2a+1\right)\left(2b-1\right)=7\)
\(TH1:\left\{{}\begin{matrix}2a+1=1\\2b-1=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=4\end{matrix}\right.\)
\(TH2:\left\{{}\begin{matrix}2a+1=7\\2b-1=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=\dfrac{1}{2}\end{matrix}\right.\)
\(TH3:\left\{{}\begin{matrix}2a+1=-1\\2b-1=-7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=-3\end{matrix}\right.\)
\(TH4:\left\{{}\begin{matrix}2a+1=-7\\2b-1=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-4\\b=0\end{matrix}\right.\)
Rồi em tự tính ab ra nha
Ta có :22A=1+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{4^2}\)+...+\(\dfrac{1}{n^2}\)
22A-A=1-\(\dfrac{1}{\left(2n\right)^2}\)
3A=\(\dfrac{\left(2n\right)^2-1}{\left(2n\right)^2}\) <\(\dfrac{n^2}{\left(2n\right)^2}\)=\(\dfrac{1}{2}\)
3A<\(\dfrac{1}{2}\) suy ra A<\(\dfrac{1}{2}\)
A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\)+.......+\(\dfrac{1}{\left(2.n\right)^2}\)
A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{\left(2.2\right)^2}\)+ \(\dfrac{1}{\left(2.3\right)^2}\) +....+\(\dfrac{1}{\left(2.n\right)^2}\)
A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^2.2^2}\) + \(\dfrac{1}{2^2.3^2}\)+......+ \(\dfrac{1}{2^2.n^2}\)
A = \(\dfrac{1}{2^2}\) \(\times\) ( 1 + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+.......+ \(\dfrac{1}{n^2}\))
22 \(\times\) A = 1 + \(\dfrac{1}{2^2}\)+ \(\dfrac{1}{3^2}\)+......+\(\dfrac{1}{n^2}\)
4A = 1 + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) +......+ \(\dfrac{1}{n^2}\)
4A = 1 + \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\) + ...+\(\dfrac{1}{n.n}\)
1 = 1
\(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\)
\(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\)
...................
\(\dfrac{1}{n.n}\) < \(\dfrac{1}{\left(n-1\right).n}\)
Cộng vế với vế ta có:
4A = 1+\(\dfrac{1}{2.2}\)+\(\dfrac{1}{3.3}\)+....+\(\dfrac{1}{n.n}\) <1+ \(\dfrac{1}{1.2}\)+ \(\dfrac{1}{2.3}\)+ ......+ \(\dfrac{1}{\left(n-1\right).n}\)
4A < 1+ \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)+ \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)+....+\(\dfrac{1}{n-1}\) - \(\dfrac{1}{n}\) = 2 - \(\dfrac{1}{n}\)
A < ( 2 - \(\dfrac{1}{n}\)): 4
A < 2 : 4 - \(\dfrac{1}{n}\) : 4
A < \(\dfrac{1}{2}\) - \(\dfrac{1}{4n}\) < \(\dfrac{1}{2}\)
Vậy A < \(\dfrac{1}{2}\)