3 km2 4cm2 = .... dam2
13hm2 24dm2 = .... dam2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 4 hoàng anh lớn tuổi hơn 8>6
bài 5 tuổi hiền là 13
bài 6 tuổi của bố là 40 tuổi
bài 7 15 tuổi
bài 8,9,10tui ko kịp làm vì 11h đêm rồi
các bạn nhanh lên giúp mình nhé , cảm ơn . Thanks you very much
\(\dfrac{4}{9}-x=\dfrac{1}{8}\\ x=\dfrac{4}{9}-\dfrac{1}{8}=\dfrac{32}{72}-\dfrac{9}{72}\\ x=\dfrac{23}{72}\)
\(\dfrac{4}{9}-x=\dfrac{1}{8}\)
`\Rightarrow`\(x=\dfrac{4}{9}-\dfrac{1}{8}\)
`\Rightarrow`\(x=\dfrac{23}{72}\)
\(\dfrac{60}{81}< \dfrac{60}{80}\) và \(\dfrac{21}{25}>\dfrac{20}{25}\)
=> \(\dfrac{60}{80}=\dfrac{3}{4}\) và \(\dfrac{20}{25}=\dfrac{4}{5}\) => \(\dfrac{4}{5}>\dfrac{3}{4}\)
\(=>\dfrac{21}{25}>\dfrac{20}{25}>\dfrac{60}{80}>\dfrac{60}{81}\)
Vậy \(\dfrac{21}{25}>\dfrac{60}{81}\)
Trước hết ta cần xem xét điều sau: Nếu 2 tam giác có chung đường cao thì tỉ số diện tích giữa 2 tam giác đó bằng tỉ số độ dài 2 cạnh đáy tương ứng.
Điều này khá dễ thấy vì giả sử có hình vẽ trên thì \(\dfrac{S_{ABD}}{S_{ACD}}=\dfrac{\dfrac{1}{2}\times AH\times BD}{\dfrac{1}{2}\times AH\times CD}=\dfrac{BD}{CD}\)
Tiếp đến, ta có tiếp điều sau: Cho tam giác ABC bất kì. Các điểm E, F lần lượt nằm trên các cạnh AC, AB. Khi đó \(\dfrac{S_{AEF}}{S_{ABC}}=\dfrac{AE\times AF}{AB\times AC}\) (tạm gọi đây là (*))
Điều này trở nên dễ thấy nhờ điều ta mới đề cập đến ở trên. Vì \(\dfrac{S_{AEF}}{S_{ABE}}=\dfrac{AF}{AB}\) và \(\dfrac{S_{ABE}}{S_{ABC}}=\dfrac{AE}{AC}\) nên nhân vế theo vế rồi rút gọn, ta được: \(\dfrac{S_{AEF}}{S_{ABC}}=\dfrac{AE\times AF}{AB\times AC}\).
Bây giờ, ta quay lại bài toán chính.
Áp dụng (*) cho tam giác ABD với 2 điểm M, Q nằm trên AB, AD, ta được \(\dfrac{S_{AMQ}}{S_{ABD}}=\dfrac{AM}{AB}\times\dfrac{AQ}{AD}=\dfrac{2}{3}\times\dfrac{2}{3}=\dfrac{4}{9}\) (1)
Tương tự, ta cũng có \(\dfrac{S_{BMN}}{S_{BAC}}=\dfrac{BM}{BA}\times\dfrac{BN}{BC}=\dfrac{1}{3}\times\dfrac{2}{3}=\dfrac{2}{9}\) (2)
\(\dfrac{S_{CNP}}{S_{CBD}}=\dfrac{CN}{CB}\times\dfrac{CP}{CD}=\dfrac{1}{3}\times\dfrac{1}{2}=\dfrac{1}{6}\) (3)
\(\dfrac{S_{DPQ}}{S_{DCA}}=\dfrac{DP}{DC}\times\dfrac{DQ}{DA}=\dfrac{1}{2}\times\dfrac{1}{3}=\dfrac{1}{6}\) (4)
Hơn nữa, nhận thấy rằng diện tích của 4 tam giác ABD, BAC, CBD và DCA đều bằng nhau và bằng \(\dfrac{1}{2}\) diện tích của hình chữ nhật ABCD nên cộng theo vế (1), (2), (3) và (4) suy ra:
\(\dfrac{S_{AQM}+S_{BMN}+S_{CNP}+S_{DPQ}}{\dfrac{1}{2}S_{ABCD}}=1\), mà tổng diện tích của 4 tam giác AQM, BMN, CNP và DPQ chính bằng \(S_{ABCD}-S_{MNPQ}\) nên ta có \(\dfrac{S_{ABCD}-S_{MNPQ}}{\dfrac{1}{2}S_{ABCD}}=1\) \(\Leftrightarrow S_{ABCD}-S_{MNPQ}=\dfrac{1}{2}S_{ABCD}\) \(\Leftrightarrow S_{MNPQ}=\dfrac{1}{2}S_{ABCD}=\dfrac{1}{2}.496=216\left(cm^2\right)\)
Vậy \(S_{MNPQ}=216cm^2\)
Hiệu số phần bằng nhau: 8-5=3(phần)
Chiều rộng mảnh vườn:
24:3 x 5= 40(m)
Chiều dài mảnh vườn:
40+24=64(m)
Diện tích mảnh vườn:
40 x 64= 2560 (m2)
Hiệu số phần bằng nhau:
\(8-5=3\) (phần)
Chiều dài của HCN:
\(24:3\times8=64\left(m\right)\)
Chiều rộng của HCN:
\(64-24=40\left(m\right)\)
Diện tích HCN:
\(64\times40=2560\left(m^2\right)\)
Đáp số: ....
SMNPQ = \(\dfrac{1}{2}\) x SABCD = 288 (cm2)
HD: Hình chữ nhật chia thành 4 hình tam giác vuông và hình thoi MNPQ
Khi viết thêm số 3 vào bên phải 215 ta được 2153
Số đã tăng số đơn vị là
`2153-215=1938` (đơn vị)
\(S_{AMQ}=\dfrac{1}{2}\cdot AM\cdot AQ=\dfrac{1}{2}\cdot\dfrac{1}{2}AB\cdot\dfrac{1}{2}AD=144\cdot\dfrac{1}{8}=18\left(cm^2\right)\)
\(S_{MBN}=\dfrac{1}{2}\cdot MB\cdot BN=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot AB\cdot\dfrac{1}{3}BC=\dfrac{1}{12}\cdot144=12\left(cm^2\right)\)
\(S_{NCP}=\dfrac{1}{2}\cdot NC\cdot CP=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot BC\cdot\dfrac{2}{3}\cdot CD=\dfrac{2}{9}\cdot144=32\left(cm^2\right)\)
\(S_{QDP}=\dfrac{1}{2}\cdot QD\cdot DP=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot AD\cdot\dfrac{1}{3}CD=\dfrac{1}{12}\cdot144=12\left(cm^2\right)\)
\(\Rightarrow S_{MNPQ}=144-18-12-32-12=70\left(cm^2\right)\)
Hướng dẫn:
SMNPQ = SABCD - (SAMQ+SBMN+SCNP+SPDQ)
+ Tính diện tích 4 tam giác theo độ dài của chiều dài và chiều rộng hình chữ nhật
+ Từ đó tính được:
SMNPQ =73 (cm2)
\(3km^2\) \(4cm^2=30000,000002dam^2\)
\(13hm^2\) \(24dm^2=1300,0024dam^2\)