cho tam giác ABC cân tại A , trên AB lấy D . Trên tia đối của tia CA lấy E sao cho CE=BD, DE cắt BC tại I . Trên tia đối của tia BC lấy F sao cho BF=CI.Cmr
a)tam giác BFD = tam giác CIE
b)tam giác DFI cân
c)I là trung điểm DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : 8.2n + 1n + 1
= 8.2n + 1 (vì 1n + 1 lúc nào cũng bằng 1)
= 23 + n . 1
Mà 23 + n luôn luôn ko chia hết cho10
Nên 8.2n + 1n + 1 ko chi hết cho10
Vì
\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
.............................
\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}=\frac{1}{10}\)
Cộng vế với vế ta được :
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{100}}>\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+....+\frac{1}{10}\) ( có 100 số \(\frac{1}{10}\) )
\(\Leftrightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{100}}>\frac{100}{10}=10\) (đpcm)
\(x=2\Rightarrow f\left(2\right)+3.f\left(\frac{1}{2}\right)=4\)
\(x=\frac{1}{2}\Rightarrow f\left(\frac{1}{2}\right)+3.f\left(2\right)=\frac{1}{4}\)
\(\Rightarrow f\left(2\right)=\frac{47}{32}\)
kết quả nhanh nhất
= 47/32
h mk nha bn hiền
chúc bn học giỏi
b) Vì 2 tam gics trên = nhau
\(\Rightarrow\)góc DFB=góc CEI; góc DBF= góc ICE (1)
góc BID= góc CIE ( đồng vị )
Ta có: góc F = 180-\(\widehat{FDB}\)-\(\widehat{DBF}\)
\(\widehat{DIB}\) =180-\(\widehat{CEI}\)-\(\widehat{ICE}\)(2)
Từ 1 và 2 \(\Rightarrow\)\(\widehat{F}\)=\(\widehat{DIB}\)
\(\Rightarrow\)tam giác DFI cân tại D
a) Vì tam giác ABC cân tại A
\(\Rightarrow\)gócB=gócC
Xét tam giác BFD và tam giác CIE
BD=CE
BF=CI
góc DBF=góc ECI
\(\Rightarrow\)2 tam giác đó = nhau