1/5-1/5^2+....+1/5^97-1/5^98
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{10^2}>\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{10\cdot11}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{4}-\frac{1}{11}=\frac{7}{44}\)
Kết luận : ....
Ta có : \(\frac{1}{4^2}< \frac{1}{3.4}\)
\(\frac{1}{5^2}< \frac{1}{4.5}\)
\(................................\)
\(\frac{1}{10^2}< \frac{1}{9.10}\)
\(\Rightarrow\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{10^2}< \frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(\Rightarrow A< \frac{1}{3}-\frac{1}{4} +\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(\Rightarrow A< \frac{1}{3}-\frac{1}{10}=\frac{7}{30}\)
Mà \(\frac{7}{30}< \frac{7}{44}\)=> \(A< \frac{7}{44}\)(đpcm)
Chúc bn hok tốt ^.^
\(A=\frac{1}{2^3}+\frac{1}{3^3}+...+\frac{1}{2019^3}\)
\(\Rightarrow A< \frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{2018\cdot2019\cdot2020}\)
\(\Rightarrow A< \frac{1}{2}\cdot\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{2018\cdot2019}-\frac{1}{2019\cdot2020}\right)\)
\(\Rightarrow A< \frac{1}{2}\cdot\left(\frac{1}{2}-\frac{1}{2019\cdot2020}\right)\)
\(\Rightarrow A< \frac{1}{4}-\left(\frac{1}{2}\cdot\frac{1}{2019\cdot2020}\right)\)
\(\Rightarrow A< \frac{1}{4}\) ( ĐPCM )