1,Tìm phân số bằng phân số 147/252 biết rằng phân số đó có
a,Tổng của tử và mẫu bằng 228252
b,Hiệu của tử và mẫu bằng 48
c,Tích của tử và mẫu bằng 756
2,Tìm n thuộc Z để các phân số sau đồng thời có giá trị nguyên
-8/n;13/n-1/;4/n+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{10x-12y}{3}=\frac{12y-15z}{4}=\frac{15z-10x}{5}=\frac{10x-12y+12y-15z+15z-10x}{3+4+5}=\frac{0}{12}=0\)
=>\(10x-12y=12y-15z=15z-10x=0\)
Từ (1) và (2) => \(\frac{x}{6}=\frac{y}{5}=\frac{z}{4}\) (đpcm)
\(A=1+\frac{3}{2^3}+\frac{4}{2^4}+....+\frac{100}{2^{100}}\)
\(2A=2+\frac{3}{2^2}+\frac{4}{2^3}+....+\frac{100}{2^{99}}\)
\(2A-A=\left(2+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{100}{2^{99}}\right)-\left(1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}\right)\)
\(A=\left(2-1\right)+\frac{3}{2^2}+\left(\frac{4}{2^3}-\frac{3}{2^3}\right)+\left(\frac{5}{2^4}-\frac{4}{2^4}\right)+...+\left(\frac{100}{2^{99}}-\frac{99}{2^{99}}\right)+\frac{100}{2^{100}}\)\(\)
\(=1+\frac{3}{2^2}+\left(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\right)+\frac{100}{2^{100}}\)
\(=1+\frac{3}{2^2}+\frac{1}{2^2}-\frac{1}{2^{99}}+\frac{100}{2^{100}}\)
\(=1+\frac{4}{2^2}-\frac{2}{2^{100}}+\frac{100}{2^{100}}\)
\(=2-\frac{98}{2^{100}}=\frac{2^{101}-98}{2^{100}}\)
Gọi chiều dài của tấm thứ nhất là x,chiều rộng của tấm thứ nhất là y.
Gọi chiều rộng của tấm thứ 2 là z,gọi chiều dài của tấm thứ 3 là t.Ta có:
$2x+t=110$
$2z+y=2,1$
Và có:
$\dfrac{xy}{120000}=\dfrac{xz}{192000}=\dfrac{1440 00}{zt}$
Ta có:
$\dfrac{xy}{120000}=\dfrac{xz}{192000}
ightarrow \dfrac{y}{5}=\dfrac{z}{8}$
Đặt $\dfrac{y}{5}=\dfrac{z}{8}=k
ightarrow y=5k \ \ z=8k$
$
ightarrow 2.8k+5k=21k=2,1
ightarrow k=0,1
ightarrow z=0,8m \ \ y=0,5m$
Lại có:
$\dfrac{xz}{192000}=\dfrac{144000}{zt}
ightarrow \dfrac{0,8x}{192000}=\dfrac{0,8t}{144000}
ightarrow \dfrac{x}{4}=\dfrac{t}{3}$
Đặt $\dfrac{x}{4}=\dfrac{t}{3}=m
ightarrow x=4n \ \ t=3n$
$
ightarrow 2x+t=11n=110
ightarrow n=10
ightarrow x=40 \ \ t=30$
$
ightarrow $ $xy=40.0,5=20 m^2 \\ xz=40.0,8=32m^2 \\ zt=30.0,8=24$