A= 1/4 + 1/16 + 1/36 + ...+1/196 chứng minh rằng A < 1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Coi số học sinh không đạt giỏi trong học kỳ I là 1.
Số học sinh lớp 6D có bằng:
2/7 + 1 = 9/7 (số học sinh còn lại)
Trong học kỳ I, số học sinh giỏi bằng:
2/7 : 9/7 = 2/9 (số học sinh cả lớp)
Coi số học sinh không đạt giỏi trong học kỳ II là 1.
Số học sinh lớp 6D có bằng:
1/2 + 1 = 3/2 (số học sinh còn lại)
Trong học kỳ II, số học sinh giỏi bằng:
1/2 : 3/2 = 1/3 (số học sinh cả lớp)
5 học sinh bằng:
1/3 - 2/9 = 1/9 (số học sinh cả lớp)
Số học sinh lớp 6D có là:
5 : 1/9 = 45 (học sinh)
Số học sinh giỏi học kỳ I là:
45 x 2/9 = 10 học sinh
Lời giải:
Dễ dàng thấy $S>0$
Mặt khác:
$S=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{200}< \frac{1}{101}+\frac{1}{101}+...+\frac{1}{101}=\frac{100}{101}<1$
Vậy $0< S< 1$ nên $S$ không phải số nguyên.
Hôm nay olm sẽ hướng dẫn các em giải dạng chứng minh một số không phải là một số nguyên thì các em cần sử dụng nguyên lý kẹp em nhé. Em cần chứng minh a < S < a + 1 ( a \(\in\) Z)
Sau đó em lập luận vì S nằm giữa hai số nguyên liên tiếp nên S không phải là số nguyên vì không tồn tại một số nguyên nằm giữa hai số nguyên liên tiếp.
Giải:
S = \(\dfrac{1}{101}\) + \(\dfrac{1}{102}\)+ \(\dfrac{1}{103}\)+ ...+ \(\dfrac{1}{200}\)
Xét dãy số: 101; 102;...; 200 có số số hạng là (200 - 101):1+1= 100
Mặt khác ta cũng có \(\dfrac{1}{101}\)> \(\dfrac{1}{102}\)> \(\dfrac{1}{103}\)> ...> \(\dfrac{1}{200}\)
⇒ \(\dfrac{1}{101}\) \(\times\) 100 > \(\dfrac{1}{101}\)+ \(\dfrac{1}{102}\)+\(\dfrac{1}{103}\)+...+\(\dfrac{1}{200}\) > \(\dfrac{1}{200}\) \(\times\) 100
⇒ \(\dfrac{100}{101}\) > S > \(\dfrac{100}{200}\)⇒ \(\dfrac{100}{101}\) > S > \(\dfrac{1}{2}\) ⇒ 1 > S > 0 ⇒ S \(\notin\) Z (đpcm)
Vì 0 và 1 là hai số nguyên dương liên tiếp nên S không phải là số nguyên do không tồn tại một số nguyên nằm giữa hai số nguyên liên tiếp.
bước 1:bấm 1 số bất kỳ (số bạn cần tách)
bước 2:ấn =
bước 3:nhấn shift
bước 4:nhấn nút o, ,,(fact B)
NHỚ CHO MÌNH 5 GP NHÉ !!!!!!
Một tia có thể tạo với 2022 tia còn lại được 2022 góc
Có 2023 tia như thế nên có 2022 . 2023 góc
Mà mỗi góc được tính 2 lần nên số góc là \(\dfrac{2022\cdot2023}{2}=2045253\)
Vậy từ 2023 tia không trùng nhau có thể tạo đượv 2045253 góc
lấy 1 tia trong 2023 tia đó , khi đó số tia còn lại là (2023-1) lấy 1 tia nối với (2023-1) tia còn lại .Làm như vậy với 2023 tia thì số góc vẽ được là : 2023.(2023-1)=4090506 góc.Mà cứ 2 tia chung gốc vẽ được 1 góc . Vậy số góc vẽ được đã đc tính 2 lần . số góc thực sự vẽ được là: 2023.(2023-1):2=2045253 góc Vậy số góc vẽ đc từ 2023 tia chung gốc là 2045253 góc CHÚC BẠN HỌC TỐT! Tick cho mình nhé
Hôm nay olm sẽ hướng dẫn các em mẹo giải các bài toán dạng này như sau:
Ta thấy vế phải là \(\dfrac{1}{2}\) thì vế trái sẽ ≤ \(\dfrac{1}{2}\) - a ( a > 0)
Em biến đổi mẫu số các phân số lần lượt thành lũy thừa của các số tự nhiên liên tiếp. Sau đó rút gọn tổng các phân số đó thì sẽ chứng minh được em nhé.
A = \(\dfrac{1}{2^2}\)+\(\dfrac{1}{4^2}\)+\(\dfrac{1}{6^2}\)+...+\(\dfrac{1}{100^2}\)
A = \(\dfrac{1}{\left(1.2\right)^2}\)+\(\dfrac{1}{\left(2.2\right)^2}\)+\(\dfrac{1}{\left(2.3\right)^2}\)+...+\(\dfrac{1}{\left(2.50\right)^2}\)
A = \(\dfrac{1}{1^2.2^2}\)+\(\dfrac{1}{2^2.2^2}\)+\(\dfrac{1}{2^2.3^2}\)+...+\(\dfrac{1}{2^2.50^2}\)
A = \(\dfrac{1}{2^2}\)\(\times\)(\(\dfrac{1}{1^2}\)+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{50^2}\))
A = \(\dfrac{1}{4}\) \(\times\)(1+\(\dfrac{1}{2.2}\)+\(\dfrac{1}{3.3}\)+...+\(\dfrac{1}{50.50}\))
Vì \(\dfrac{1}{1}\)> \(\dfrac{1}{2}\)>\(\dfrac{1}{3}\)>\(\dfrac{1}{4}\)>...>\(\dfrac{1}{50}\)
⇒ \(\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{50.50}\)<\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+...\(\dfrac{1}{49.50}\)
A = \(\dfrac{1}{4}\).(1+\(\dfrac{1}{2.2}\)+\(\dfrac{1}{3.3}\)+\(\dfrac{1}{4.4}\)+..+\(\dfrac{1}{50.50}\)) < \(\dfrac{1}{4}\) .(1+\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+..+\(\dfrac{1}{49.50}\))
A < \(\dfrac{1}{4}\).(1+\(\dfrac{1}{1}\)-\(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+...+\(\dfrac{1}{49}\)-\(\dfrac{1}{50}\))
A<\(\dfrac{1}{4}\).(2 - \(\dfrac{1}{50}\))
A < \(\dfrac{1}{2}\) - \(\dfrac{1}{200}\) < \(\dfrac{1}{2}\)
Vậy A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\)+\(\dfrac{1}{6^2}\)+...+\(\dfrac{1}{100^2}\) < \(\dfrac{1}{2}\) ( đpcm)
Đặt A = \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\)
3A = 1 - \(\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\)
4A = ( 1 - \(\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\) ) + ( \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\) )
= 1 - \(\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...-\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\)
Đặt B = 1 - \(\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...-\dfrac{1}{3^{99}}\)
3B = 3 - 1 + \(\dfrac{1}{3}-\dfrac{1}{3^2}\) + ... - \(\dfrac{1}{3^{98}}\)
4B = ( 3 - 1 + \(\dfrac{1}{3}-\dfrac{1}{3^2}\) + ... - \(\dfrac{1}{3^{98}}\) ) + ( 1 - \(\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...-\dfrac{1}{3^{99}}\) )
= 3 - \(\dfrac{1}{3^{99}}\)
B = \(\dfrac{3}{4}-\dfrac{1}{3^{99}\cdot4}\)
⇒ 4A = \(\dfrac{3}{4}-\dfrac{1}{3^{99}\cdot4}\) - \(\dfrac{100}{3^{100}}\)
A = \(\dfrac{3}{16}-\dfrac{1}{3^{99}\cdot4^2}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)
Vậy A < \(\dfrac{3}{16}\)
Ta cần phải có số nguyên tố p sao cho p2+4 và p2-4 đều là số nguyên tố là 3. Cách giải thích như sau:
- Xét p=2 ⇒ 22+4= 8 (hợp số loại)
- Xét p=3 ⇒ 32+4= 13,32−4 = 5 (số nguyên tố thỏa)
- Xét p>3 ⇒ p có dạng 3k+1 hoặc 3k+2
- Xét p có dạng 3k+1 ⇒p2−4 = (3k+1)2−4= 9k2+3k+1−4= 9k2+3k−3 = 3(3k2+k−1)⋮3 (hợp số loại)
- Xét p có dạng 3k+2 ⇒p2−4 = (3k+2)2−4= 9k2+6k+4−4= 9k2+6k =3(3k2+2k)⋮3 (hợp số loại)
Vậy p=3 là số nguyên tố duy nhất thỏa điều kiện .
--- Học tốt nhé! ----
Theo công thức, nếu có n (n ≥ 2) tia chung gốc (không có tia nào trùng nhau) thì số lượng góc tạo thành là:
\(\dfrac{2n\left(2-1\right)}{2}\)
Do đó, để tính số góc tạo thành từ 2023 tia chung gốc, ta chỉ cần thay n = 2023 vào công thức trên và được kết quả là
\(\dfrac{2023\text{×}2022}{2}\) \(=\)\(\text{2045023}\) \(\left(góc\right)\)
Vậy số góc tạo thành từ 2023 tia chung gốc là 2045023 góc.
--- Học tốt ---
giúp mình với ạaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
A = \(\dfrac{1}{4}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{36}\) +...+ \(\dfrac{1}{196}\)
A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\)+...+ \(\dfrac{1}{14^2}\)
A = \(\dfrac{1}{\left(1.2\right)^2}\) + \(\dfrac{1}{\left(2.2\right)^2}\) + \(\dfrac{1}{\left(2.3\right)^2}\)+...+ \(\dfrac{1}{\left(2.7\right)^2}\)
A = \(\dfrac{1}{1^2.2^2}\) + \(\dfrac{1}{2^2.2^2}\)+ \(\dfrac{1}{2^2.3^2}\)+...+ \(\dfrac{1}{2^2.7^2}\)
A = \(\dfrac{1}{2^2}\) \(\times\)( \(\dfrac{1}{1}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+...+ \(\dfrac{1}{7^2}\))
Vì \(\dfrac{1}{2}>\dfrac{1}{3}>\dfrac{1}{4}>\dfrac{1}{5}\) \(>\)\(\dfrac{1}{6}>\dfrac{1}{7}\)
⇒ \(\dfrac{1}{2.2}\)+\(\dfrac{1}{3.3}\)+\(\dfrac{1}{4.4}\)+\(\dfrac{1}{5.5}\)+\(\dfrac{1}{6.6}\)+\(\dfrac{1}{7.7}\) < \(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+\(\dfrac{1}{4.5}\)+\(\dfrac{1}{5.6}\)+\(\dfrac{1}{6.7}\)
⇒ A < \(\dfrac{1}{2^2}\) \(\times\) ( 1 + \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)+ \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{7}\))
⇒ A < \(\dfrac{1}{4}\) \(\times\) ( 2 - \(\dfrac{1}{7}\))
⇒ A < \(\dfrac{1}{2}\) - \(\dfrac{1}{28}\) < \(\dfrac{1}{2}\)
⇒ A < \(\dfrac{1}{2}\) ( đpcm)