K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2020

\(9x^2+3y^2+6xy-6x+2y-35=0\)

\(\Leftrightarrow\left(9x^2+6xy+y^2\right)-2\left(3x+y\right)+1+2y^2+4y+2=38\)

\(\Leftrightarrow\left(3x+y-1\right)^2+2\left(y+1\right)^2=38\)(*)

\(\Rightarrow\left(3x+y-1\right)^2=38-2\left(y+1\right)^2\le38\)

\(\Rightarrow-\sqrt{38}\le3x+y-1\le\sqrt{38}\)

Từ (*) suy ra 3x + y - 1 chẵn mà 3x + y - 1 nguyên nên \(3x+y-1\in\left\{\pm6;\pm4;\pm2;0\right\}\)

* Nếu \(3x+y-1=\pm6\)thì \(2\left(y+1\right)^2=2\Rightarrow y+1=\pm1\Rightarrow\orbr{\begin{cases}y=-2\\y=0\end{cases}}\)

Th1: \(3x+y-1=6\)

+) \(y=-2\Rightarrow x=3\)

+) \(y=0\Rightarrow x=\frac{7}{3}\left(L\right)\)

Th2: \(3x+y-1=-6\)

+) \(y=-2\Rightarrow x=-1\)

+) \(y=0\Rightarrow x=\frac{-5}{3}\left(L\right)\)

* Nếu \(3x+y-1=\pm4\)thì \(2\left(y+1\right)^2=22\left(L\right)\)

* Nếu \(3x+y-1=\pm2\)thì \(2\left(y+1\right)^2=34\left(L\right)\)

* Nếu 3x + y - 1 = 0 thì \(2\left(y+1\right)^2=38\left(L\right)\)

Vậy phương trình có 2 cặp nghiệm nguyên \(\left(x,y\right)\in\left\{\left(3;-2\right);\left(-1;-2\right)\right\}\)

16 tháng 10 2020

\(ĐK:x\ge0\)

\(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\Leftrightarrow\left(x^2+2x-x\sqrt{x}-2\sqrt{x}\right)-4\left(x-1\right)=0\Leftrightarrow\sqrt{x}\left(x+2\right)\left(\sqrt{x}-1\right)-4\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)=0\)\(\Leftrightarrow\left(\sqrt{x}-1\right)\left[\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)+2\left(\sqrt{x}-2\right)\right]=0\)\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+2\right)=0\)

Ta có \(x+2\sqrt{x}+2=x+2\sqrt{x}+1+1=\left(\sqrt{x}+1\right)^2+1>0\forall x\inℝ\)nên \(\orbr{\begin{cases}\sqrt{x}=1\\\sqrt{x}=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=4\end{cases}}\)

Vậy phương trình có tập nghiệm S = {1;4}

16 tháng 10 2020

Ta có: \(-7x^3+12x^2y-6xy^2+y^3-2x+2y=0\)

\(\Leftrightarrow\left(x^2y-x^3\right)-\left(xy^2-x^2y\right)+\left(2x^2y-2x^3\right)+\left(y^3-xy^2\right)-\left(4xy^2-4x^2y\right)+\left(4x^2y-4x^3\right)+\left(2y-2x\right)=0\)\(\Leftrightarrow\left(y-x\right)\left(x^2-xy+2x^2+y^2-4xy+4x^2+2\right)=0\)

\(\Leftrightarrow\left(y-x\right)\left[x^2-x\left(y-2x\right)+\left(y-2x\right)^2+2\right]=0\)

\(\Leftrightarrow\left(y-x\right)\left[\left(x-\frac{y-2x}{2}\right)^2+\frac{3}{4}\left(y-2x\right)^2+2\right]=0\)

Mà \(\left(x-\frac{y-2x}{2}\right)^2+\frac{3}{4}\left(y-2x\right)^2+2>0\left(\forall x,y\right)\)

\(\Rightarrow y-x=0\Leftrightarrow x=y\)

Khi đó \(HPT\Leftrightarrow\hept{\begin{cases}2x^2-y^2-7x+2y+6=0\\x=y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x^2-x^2-7x+2x+6=0\\x=y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2-5x+6=0\\x=y\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x-2\right)\left(x-3\right)=0\\x=y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\in\left\{2;3\right\}\\x=y\end{cases}}\)

Vậy ta có 2 cặp (x;y) thỏa mãn: \(\left(2;2\right);\left(3;3\right)\)

16 tháng 10 2020

\(\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}=\sqrt{4+\sqrt{8}}.\sqrt{2^2-\left(2+\sqrt{2}\right)}=\sqrt{4+\sqrt{8}}.\sqrt{2-\sqrt{2}}=\sqrt{8+2\sqrt{8}-4\sqrt{2}-4}=\sqrt{4}=2\)

16 tháng 10 2020

\(ĐK:x\ge4\)

Bình phương hai vế của phương trình, ta được: \(x-1=x^2-8x+16\Leftrightarrow x^2-9x+17=0\)

Dùng công thức nghiệm tìm được\(x=\frac{9+\sqrt{13}}{2}\left(tm\right)\)hoặc \(x=\frac{9-\sqrt{13}}{2}\left(L\right)\)

Vậy phương trình có 1 nghiệm duy nhất là \(\frac{9+\sqrt{13}}{2}\)

16 tháng 10 2020

\(\sqrt{x-1}=x-4\)

ĐK : x ≥ 4

Bình phương hai vế

pt <=> x - 1 = x2 - 8x + 16

    <=> x2 - 8x + 16 - x + 1 = 0

    <=> x2 - 9x + 17 = 0

Δ = b2 - 4ac = (-9)2 - 4.1.17 = 81 - 68 = 13

Δ > 0 nên phương trình có hai nghiệm phân biệt

\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{9+\sqrt{13}}{2}\left(nhan\right)\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{9-\sqrt{13}}{2}\left(loai\right)\end{cases}}\)

Vậy phương trình có nghiệm duy nhất là \(x=\frac{9+\sqrt{13}}{2}\)