Bài 1 Khử mẫu của biểu thức
a) \(\sqrt{\frac{1}{20}}\)
b) \(\sqrt{\frac{1}{60}}\)
c) \(\sqrt{\frac{3}{98}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chờ từ trưa không idol nào đụng thì thôi em xin vậy :))
BT1:
Ta có: \(A\cdot B=\sqrt{4+\sqrt{10+2\sqrt{5}}}\cdot\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
\(=\sqrt{16-10-2\sqrt{5}}\)
\(=\sqrt{6-2\sqrt{5}}=\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-1\)
Từ đó thay vào: \(\left(A-B\right)^2\)
\(=A^2-2AB+B^2\)
\(=4+\sqrt{10+2\sqrt{5}}-2\left(\sqrt{5}-1\right)+4-\sqrt{10+2\sqrt{5}}\)
\(=10-2\sqrt{5}\)
\(\Rightarrow A-B=\sqrt{10-2\sqrt{5}}\)
BT2:
Đặt \(B=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
\(\Leftrightarrow B^2=4+\sqrt{7}-2\sqrt{\left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)}+4-\sqrt{7}\)
\(=8-2\sqrt{16-7}=8-2\cdot3=2\)
\(\Rightarrow B=\sqrt{2}\)
\(\Rightarrow A=B-\sqrt{2}=\sqrt{2}-\sqrt{2}=0\)
BT3:
đk: \(\orbr{\begin{cases}x\ge2\\x< -2\end{cases}}\)
\(C=\frac{x+2+\sqrt{x^2-4}}{x+2-\sqrt{x^2-4}}+\frac{x+2-\sqrt{x^2-4}}{x+2+\sqrt{x^2-4}}\)
\(C=\frac{\left(x+2+\sqrt{x^2-4}\right)^2}{\left(x+2\right)^2-\left(x^2-4\right)}+\frac{\left(x+2-\sqrt{x^2-4}\right)^2}{\left(x+2\right)^2-\left(x^2-4\right)}\)
\(C=\frac{\left(x+2\right)^2+2\left(x+2\right)\sqrt{x^2-4}+x^2-4+\left(x+2\right)^2-2\left(x+2\right)\sqrt{x^2-4}+x^2-4}{x^2+4x+4-x^2+4}\)
\(C=\frac{2x^2+8x+8+2x^2-8}{4x+8}\)
\(C=\frac{4x^2+8x}{4x+8}=x\)
Vậy C = x
x nguyên dương nên x có 3 dạng 3k; 3k + 1; 3k + 2
*) Xét x = 3k thì \(x^2+x-1=\left(3k\right)^2+3k-1\) không chia hết cho 3
*) Xét x = 3k + 1 thì \(x^2+x-1=\left(3k+1\right)^2+3k+1-1=BS3+1\)không chia hết cho 3
*) Xét x = 3k + 2 thì \(x^2+x-1=\left(3k+2\right)^2+3k+2-1=BS3+2\)không chia hết cho 3
Vậy \(x^2+x-1\)luôn không chia hết cho 3 (1)
Xét vế phải: vì y nguyên dương nên 2y + 1 > 0 suy ra \(3^{2y+1}⋮3\)(2)
Từ (1) và (2) suy ra phương trình vô nghiệm
a) Để hàm xác định thì \(\hept{\begin{cases}x\ge0\\\sqrt{x}-1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
b) Ta có: \(f\left(x\right)=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(\Rightarrow f\left(4-2\sqrt{3}\right)=\frac{\sqrt{4-2\sqrt{3}}+1}{\sqrt{4-2\sqrt{3}}-1}=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}+1}{\sqrt{\left(\sqrt{3}-1\right)^2}-1}=\frac{\sqrt{3}}{\sqrt{3}-2}\)
và \(f\left(a^2\right)=\frac{\sqrt{a^2}+1}{\sqrt{a^2}-1}=\frac{\left|a\right|+1}{\left|a\right|-1}\)(với \(a\ne\pm1\))
* Nếu \(a\ge0;a\ne1\)thì \(f\left(a^2\right)=\frac{a+1}{a-1}\)
* Nếu \(a< 0;a\ne-1\)thì \(f\left(a^2\right)=\frac{a-1}{a+1}\)
c) \(f\left(x\right)=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}-1+2}{\sqrt{x}-1}=1+\frac{2}{\sqrt{x}-1}\)
Để f(x) nguyên thì \(\frac{2}{\sqrt{x}-1}\)nguyên hay \(2⋮\sqrt{x}-1\Rightarrow\sqrt{x}-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Mà \(\sqrt{x}-1\ge-1\)nên ta xét ba trường hợp:
+) \(\sqrt{x}-1=-1\Rightarrow x=0\left(tmđk\right)\)
+) \(\sqrt{x}-1=1\Rightarrow x=4\left(tmđk\right)\)
+) \(\sqrt{x}-1=2\Rightarrow x=9\left(tmđk\right)\)
Vậy \(x\in\left\{0;4;9\right\}\)thì f(x) có giá trị nguyên
d) \(f\left(x\right)=\frac{\sqrt{x}+1}{\sqrt{x}-1}\); \(f\left(2x\right)=\frac{\sqrt{2x}+1}{\sqrt{2x}-1}\)
f(x) = f(2x) khi \(\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{2x}+1}{\sqrt{2x}-1}\Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{2x}-1\right)=\left(\sqrt{x}-1\right)\left(\sqrt{2x}+1\right)\)\(\Leftrightarrow\sqrt{2}x+\sqrt{2x}-\sqrt{x}-1=\sqrt{2}x-\sqrt{2x}+\sqrt{x}-1\)\(\Leftrightarrow\sqrt{2x}-\sqrt{x}=-\sqrt{2x}+\sqrt{x}\Leftrightarrow2\sqrt{2x}=2\sqrt{x}\Leftrightarrow\sqrt{2x}=\sqrt{x}\Leftrightarrow x=0\)(tmđk)
Vậy x = 0 thì f(x) = f(2x)
Ta có: \(x^4+y^4+\frac{x^4y^4}{\left(x^2+y^2\right)^2}\)
\(=\left(x^4+2x^2y^2+y^4\right)-2x^2y^2+\frac{x^4y^4}{\left(x^2+y^2\right)}\)
\(=\left(x^2+y^2\right)^2-2x^2y^2+\left(\frac{x^2y^2}{x^2+y^2}\right)^2\)
\(=\left(x^2+y^2-\frac{x^2y^2}{x^2+y^2}\right)^2\)
Thay vào ta tính được:
\(P=\sqrt{\frac{x^2y^2}{x^2+y^2}+\frac{x^2y^2}{\left(x+y\right)^2}+\sqrt{\left(x^2+y^2-\frac{x^2y^2}{x^2+y^2}\right)^2}}\)
Mà \(x^2+y^2-\frac{x^2y^2}{x^2+y^2}=\frac{\left(x^2+y^2\right)^2-x^2y^2}{x^2+y^2}=\frac{x^4+x^2y^2+y^4}{x^2+y^2}>0\left(\forall x,y\right)\)
Khi đó:
\(P=\sqrt{\frac{x^2y^2}{x^2+y^2}+\frac{x^2y^2}{\left(x+y\right)^2}+x^2+y^2-\frac{x^2y^2}{x^2+y^2}}\)
\(P=\sqrt{x^2+y^2+\frac{x^2y^2}{\left(x+y\right)^2}}\)
\(P=\sqrt{\left(x^2+2xy+y^2\right)-2xy+\frac{x^2y^2}{\left(x+y\right)^2}}\)
\(P=\sqrt{\left(x+y\right)^2-2xy+\left(\frac{xy}{x+y}\right)^2}\)
\(P=\sqrt{\left(x+y-\frac{xy}{x+y}\right)^2}\)
\(P=\left|x+y-\frac{xy}{x+y}\right|=\left|\frac{x^2+xy+y^2}{x+y}\right|=\frac{x^2+xy+y^2}{x+y}\)
Vậy \(P=\frac{x^2+xy+y^2}{x+y}\)
\(\sqrt{x +4} = \frac{-2x}{5+x} -2 = \frac{-4x+5}{5+x}\\ \)
Bình phương cả 2 vế sẽ cho phương trình bậc 3....
\(ĐKXĐ:x\ne0\)
\(A=\sqrt{\frac{\left(x^2-3\right)^2}{x^2}+12}+\sqrt{\left(x+2\right)^2-8x}\)
\(=\sqrt{\frac{x^4-6x^2+9}{x^2}+\frac{12x^2}{x^2}}+\sqrt{x^2+4x+4-8x}\)
\(=\sqrt{\frac{x^4-6x^2+9+12x^2}{x^2}}+\sqrt{x^2-4x+4}\)
\(=\sqrt{\frac{x^4+6x^2+9}{x^2}}+\sqrt{\left(x-2\right)^2}\)
\(=\sqrt{\frac{\left(x^2+9\right)^2}{x^2}}+\sqrt{\left(x-2\right)^2}\)
\(=\frac{x^2+9}{\left|x\right|}+\left|x-2\right|=\frac{x^2}{\left|x\right|}+\frac{9}{\left|x\right|}+\left|x-2\right|\)
Vì \(x\inℤ\)\(\Rightarrow\frac{x^2}{\left|x\right|}\inℕ\), \(\left|x-2\right|\inℕ^∗\)
\(\Rightarrow\)Để A có giá trị nguyên thì \(\frac{9}{\left|x\right|}\inℕ^∗\)
\(\Rightarrow\left|x\right|\in\left\{1;3;9\right\}\)\(\Rightarrow x\in\left\{\pm1;\pm3;\pm9\right\}\)
Vậy \(x\in\left\{\pm1;\pm3;\pm9\right\}\)
a) \(\sqrt{\frac{1}{20}}=\frac{\sqrt{1}}{\sqrt{20}}=\frac{1}{\sqrt{2^2\cdot5}}=\frac{1}{2\sqrt{5}}=\frac{\sqrt{5}}{2\sqrt{5}\cdot\sqrt{5}}=\frac{\sqrt{5}}{10}\)
b) \(\sqrt{\frac{1}{60}}=\frac{\sqrt{1}}{\sqrt{60}}=\frac{1}{\sqrt{2^2\cdot15}}=\frac{1}{2\sqrt{15}}=\frac{\sqrt{15}}{2\sqrt{15}\cdot\sqrt{15}}=\frac{\sqrt{15}}{30}\)
b) \(\sqrt{\frac{3}{98}}=\frac{\sqrt{3}}{\sqrt{98}}=\frac{\sqrt{3}}{\sqrt{7^2\cdot2}}=\frac{\sqrt{3}}{7\sqrt{2}}=\frac{\sqrt{3}\cdot\sqrt{2}}{7\sqrt{2}\cdot\sqrt{2}}=\frac{\sqrt{6}}{14}\)