Tìm x,y thỏa mãn các đẳng thức:
\(x^3+y^3-8xy\sqrt{2\left(x^2+y^2\right)}+7x^2y+7xy^2=0\)
và \(\sqrt{y}-\sqrt{2x-3}+2x=6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\sqrt{\sqrt{5}+\sqrt{2}}}{\sqrt{3\sqrt{5}-3\sqrt{2}}}=\frac{\sqrt{\sqrt{5}+\sqrt{2}}}{\sqrt{3.\left(\sqrt{5}-\sqrt{2}\right)}}=\frac{\sqrt{\sqrt{5}+\sqrt{2}}}{\sqrt{3}.\sqrt{\sqrt{5}-\sqrt{2}}}\)
\(=\frac{(\sqrt{\sqrt{5}+\sqrt{2}})^2}{\sqrt{3}.\sqrt{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}}=\frac{\sqrt{5}+\sqrt{2}}{\sqrt{3}.\sqrt{5-2}}\)
\(=\frac{\sqrt{5}+\sqrt{2}}{\sqrt{3}.\sqrt{3}}=\frac{\sqrt{5}+\sqrt{2}}{3}\)
\(M=\frac{2\sqrt{a}}{\sqrt{a}+3}+\frac{\sqrt{a}+1}{\sqrt{a}-3}+\frac{3-11\sqrt{a}}{9-a}\)
ĐK : \(\hept{\begin{cases}a\ge0\\a\ne9\end{cases}}\)
\(=\frac{2\sqrt{a}}{\sqrt{a}+3}+\frac{\sqrt{a}+1}{\sqrt{a}-3}+\frac{11\sqrt{a}-3}{a-9}\)
\(=\frac{2\sqrt{a}\left(\sqrt{a}-3\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}+\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}+\frac{11\sqrt{a}-3}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}\)
\(=\frac{2a-6\sqrt{a}}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}+\frac{a+4\sqrt{a}+3}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}+\frac{11\sqrt{a}-3}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}\)
\(=\frac{2a-6\sqrt{a}+a+4\sqrt{a}+3+11\sqrt{a}-3}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}\)
\(=\frac{3a+9\sqrt{a}}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}\)
\(=\frac{3\sqrt{a}\left(\sqrt{a}+3\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}=\frac{3\sqrt{a}}{\sqrt{a}-3}\)
b) Thiếu đề
pt \(\Leftrightarrow M=\frac{2\sqrt{a}\left(\sqrt{a}-3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}+\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}-\frac{3-11\sqrt{a}}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(\Leftrightarrow M=\frac{2a-6\sqrt{a}+a+3+4\sqrt{a}-3+11\sqrt{a}}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(\Leftrightarrow M=\frac{3a-9\sqrt{a}}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(\Leftrightarrow M=\frac{3\sqrt{a}\left(\sqrt{a}-3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(\Leftrightarrow M=\frac{3\sqrt{a}}{\sqrt{a}+3}\)
Ta có công thức tổng quát: \(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\sqrt{n+1}-\sqrt{n}\)(*)
Áp dụng (*), ta được: \(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}=\left(\sqrt{2}-\sqrt{1}\right)+\left(\sqrt{3}-\sqrt{2}\right)+\left(\sqrt{4}-\sqrt{3}\right)+...+\left(\sqrt{100}-\sqrt{99}\right)=\sqrt{100}-\sqrt{1}=9\left(đpcm\right)\)
Trục căn thức ở mẫu :
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\)
\(=\frac{\sqrt{1}-\sqrt{2}}{\left(\sqrt{1}+\sqrt{2}\right)\left(\sqrt{1}-\sqrt{2}\right)}+\frac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}+\frac{\sqrt{3}-\sqrt{4}}{\left(\sqrt{3}+\sqrt{4}\right)\left(\sqrt{3}-\sqrt{4}\right)}+...+\frac{\sqrt{99}-\sqrt{100}}{\left(\sqrt{99}+\sqrt{100}\right)\left(\sqrt{99}-\sqrt{100}\right)}\)
\(=\frac{\sqrt{1}-\sqrt{2}}{1-2}+\frac{\sqrt{2}-\sqrt{3}}{2-3}+\frac{\sqrt{3}-\sqrt{4}}{3-4}+...+\frac{\sqrt{99}-\sqrt{100}}{99-100}\)
\(=\frac{\sqrt{1}-\sqrt{2}}{-1}+\frac{\sqrt{2}-\sqrt{3}}{-1}+\frac{\sqrt{3}-\sqrt{4}}{-1}+...+\frac{\sqrt{99}-\sqrt{100}}{-1}\)
\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{100}-\sqrt{99}\)
\(=\sqrt{100}-\sqrt{1}\)
\(=10-1=9\)
=> đpcm
\(\sqrt{x^2+5x+20}=4\)
ĐK : x ∈ R
Bình phương hai vế
<=> \(x^2+5x+20=16\)
<=> \(x^2+5x+20-16=0\)
<=> \(x^2+5x+4=0\)(1)
Ta có : a - b + c = 1 - 5 + 4 = 0
=> (1) có hai nghiệm \(\hept{\begin{cases}x_1=-1\\x_2=-\frac{c}{a}=-\frac{4}{1}=-4\end{cases}}\)
\(\sqrt{x^2+5x+20}=4\)
\(\Rightarrow\left(\sqrt{x^2+5x+20}\right)^2=16\)
\(\Leftrightarrow x^2+5x+20=16\)
\(\Leftrightarrow x^2+5x+4=0\)
\(\Leftrightarrow\left(x^2+x\right)+\left(4x+4\right)=0\)
\(\Leftrightarrow x\left(x+1\right)+4\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1;-4\right\}\)
\(ĐKXĐ:y\ge0\)
\(x^2-4x+y-6\sqrt{y}+13=0\)
\(\Leftrightarrow x^2-4x+4+y-6\sqrt{y}+9=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(\sqrt{y}-3\right)^2=0\)
Vì \(\left(x-2\right)^2\ge0\forall x\); \(\left(\sqrt{y}-3\right)^2\ge0\forall y\ge0\)
\(\Rightarrow\left(x-2\right)^2+\left(\sqrt{y}-3\right)^2\ge0\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2=0\\\sqrt{y}-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\\sqrt{y}=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=9\left(t/m\right)\end{cases}}\)( t/m là thỏa mãn )
Vậy \(x=2\)và \(y=9\)
\(x^2-4x+y-6\sqrt{y}+13=0\)
<=> \(\left(x^2-4x+4\right)+\left(y-6\sqrt{y}+9\right)=0\)
<=> \(\left(x-2\right)^2+\left(\sqrt{y}-3\right)^2=0\)
Ta có : \(\hept{\begin{cases}\left(x-2\right)^2\ge0\forall x\\\left(\sqrt{y}-3\right)^2\ge0\forall y\ge0\end{cases}}\Leftrightarrow\left(x-2\right)^2+\left(\sqrt{y}-3\right)^2\ge0\forall x,\left(y\ge0\right)\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-2=0\\\sqrt{y}-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=9\left(tm\right)\end{cases}}\)
đk: \(\hept{\begin{cases}x\ge\frac{3}{2}\\y\ge\frac{3}{2}\end{cases}}\)
Xét y = 0 => PT vô nghiệm
Xét y khác 0:
Ta có: \(x^3+y^3-8xy\sqrt{2\left(x^2+y^2\right)}+7x^2y+7xy^2=0\)
\(\Leftrightarrow x^3+y^3+7xy\left(x+y\right)=8xy\sqrt{2\left(x^2+y^2\right)}\)
\(\Leftrightarrow\frac{\left(x^3+y^3\right)}{y^3}+\frac{7xy\left(x+y\right)}{y^3}=\frac{8xy\sqrt{2\left(x^2+y^2\right)}}{y^3}\)
\(\Leftrightarrow\left(\frac{x}{y}\right)^3+1+7\cdot\frac{x}{y}\cdot\left(1+\frac{x}{y}\right)=8\cdot\frac{x}{y}\cdot\sqrt{2+2\left(\frac{x}{y}\right)^2}\)
Đặt \(\frac{x}{y}=t>0\) khi đó: \(PT\Leftrightarrow t^3+1+7t\left(1+t\right)=8t\sqrt{2\left(1+t^2\right)}\)
\(=\left[8t\sqrt{2\left(1+t\right)^2}-8t\left(t+1\right)\right]+8t\left(t+1\right)\)
\(\Leftrightarrow t^3-t^2-t+1=8t\cdot\frac{2\left(1+t^2\right)-\left(t+1\right)^2}{\sqrt{2\left(1+t^2\right)}+t+1}\)
\(\Leftrightarrow t^2\left(t-1\right)-\left(t-1\right)=8t\cdot\frac{2+2t^2-t^2-2t-1}{\sqrt{2\left(1+t^2\right)}+t+1}\)
\(\Leftrightarrow\left(t-1\right)^2\left(t+1\right)=8t\cdot\frac{\left(t-1\right)^2}{\sqrt{2\left(1+t^2\right)}+t+1}\)
\(\Leftrightarrow\left(t-1\right)^2\left[t+1-\frac{1}{\sqrt{2\left(1+t^2\right)}+t+1}\right]=0\)
Mà \(t+1-\frac{1}{\sqrt{2\left(1+t^2\right)}+t+1}=\frac{t\left(\sqrt{2\left(1+t^2\right)}+t+1\right)+\sqrt{2\left(1+t^2\right)}+t}{\sqrt{2\left(1+t^2\right)}+t+1}>0\)
\(\Rightarrow t-1=0\Leftrightarrow t=1\Leftrightarrow\frac{x}{y}=1\Rightarrow x=y\)
Khi đó \(\sqrt{y}-\sqrt{2x-3}+2x=6\)
\(\Leftrightarrow\sqrt{x}-\sqrt{2x-3}=6-2x\)
\(\Leftrightarrow\frac{x-2x+3}{\sqrt{x}+\sqrt{2x-3}}=2\left(3-x\right)\)
\(\Leftrightarrow\frac{3-x}{\sqrt{x}+\sqrt{2x-3}}=2\left(3-x\right)\)
\(\Leftrightarrow\left(x-3\right)\left(2-\frac{1}{\sqrt{x}+\sqrt{2x-3}}\right)=0\)
Nếu \(2-\frac{1}{\sqrt{x}+\sqrt{2x-3}}=0\)
\(\Leftrightarrow\frac{1}{\sqrt{x}+\sqrt{2x-3}}=2\)
\(\Leftrightarrow\sqrt{x}+\sqrt{2x-3}=\frac{1}{2}\)
\(\Leftrightarrow\sqrt{x}=\frac{\frac{13}{2}-2x}{2}\) (CMT)
\(\Leftrightarrow4\sqrt{x}=13-4x\)
\(\Leftrightarrow16x=169-104x+16x^2\)
\(\Leftrightarrow16x^2-120x+169=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=y=\frac{15+2\sqrt{14}}{4}\\x=y=\frac{15-2\sqrt{14}}{4}\end{cases}}\)
Nếu \(x-3=0\Rightarrow x=y=3\)
Vậy ta có 3 cặp số (x;y) thỏa mãn: ...
Thử lại ta thấy cặp nghiệm vô tỉ:
\(x=y=\frac{15\pm2\sqrt{14}}{4}\) không thỏa mãn nên ta chỉ có 1 cặp nghiệm thỏa mãn:
\(x=y=3\)