K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2023

n =10

31 tháng 12 2023

loading... a) 

Ta có:

OH = R = 12 (cm)

OM = 2R (gt)

⇒ OM = 2.12 = 24 (cm)

∆OAM vuông tại A

⇒ OM² = OA² + AM² (Pytago)

⇒ AM² = OM² - OA²

= 24² - 12²

= 432

⇒ AM = 12√3 (cm)

b) ∆OAM vuông tại A

⇒ sin AMO = OA/OM = 1/2

⇒ ∠AMO = 30⁰

Do MA và MB là hai tiếp tuyến cắt nhau tại M

⇒ MO là tia phân giác của ∠AMB

⇒ ∠BMO = ∠AMO = 30⁰

⇒ ∠AMB = ∠AMO + ∠BMO

= 30⁰ + 30⁰

= 60⁰

Do MA và MB là hai tiếp tuyến cắt nhau tại M

⇒ MA = MB

⇒ ∆ABM cân tại M

Mà ∠AMB = 60⁰ (cmt)

⇒ ∆ABM là tam giác đều

30 tháng 12 2023

Không mất tổng quát, giả sử \(BC=1\)

Từ gt \(\Rightarrow\widehat{BAC}=180^o-2\widehat{ABC}=28^o5'22''\)

Áp dụng định lý sin cho tam giác ABC, ta có:

\(\dfrac{AC}{\sin B}=\dfrac{BC}{\sin A}\Rightarrow AC=\dfrac{BC\sin B}{\sin A}\) \(=\dfrac{\sin\left(75^o57'19''\right)}{\sin\left(28^o5'22''\right)}=2k\)

Mà tam giác ABC cân tại A nên \(AB=AC=2k\)

\(\Rightarrow MB=MA=k\)

Có \(MC=\sqrt{\dfrac{2\left(CA^2+CB^2\right)-AB^2}{4}}\) \(=\sqrt{\dfrac{2\left(4k^2+1\right)-4k^2}{4}}\) \(=\dfrac{\sqrt{4k^2+2}}{2}\) (Công thức tính độ dài đường trung tuyến trong tam giác, mình không chứng minh ở đây nhé.)

 Áp dụng định lý sin cho tam giác ACM, có:

 \(\dfrac{AM}{\sin\widehat{ACM}}=\dfrac{CM}{\sin\widehat{A}}\) \(\Rightarrow\sin\widehat{ACM}=\dfrac{AM\sin A}{CM}\) \(=\dfrac{k\sin\left(28^o5'22''\right)}{\dfrac{\sqrt{4k^2+2}}{2}}\)

\(\Rightarrow...\)

 

30 tháng 12 2023

Ta có \(2016^{2017}=\left(2000+16\right)^{2017}\) \(=1000P+16^{2017}\)

Suy ra 3 chữ số tận cùng của số đã cho chính là 3 chữ số tận cùng của \(N=16^{2017}\).

 Dễ thấy chữ số tận cùng của N là 6.

 Ta tính thử một vài giá trị của \(16^n\):

 \(16^1=16;16^2=256;16^3=4096;16^4=65536\)\(;16^5=1048576\)\(16^6=16777216\);...

 Từ đó ta có thể dễ dàng dự đoán được quy luật sau: \(16^{5k+2}\) có chữ số thứ hai từ phải qua là 5 với mọi số tự nhiên k.    (1)

 Chứng minh: (1) đúng với \(k=0\).

 Giả sử (*) đúng đến \(k=l\ge0\). Khi đó \(16^{5l+2}=100Q+56\). Ta cần chứng minh (1) đúng với \(k=l+1\). Thật vậy, \(16^{5\left(l+1\right)+2}=16^{5l+2}.16^5\) \(=\left(100Q+56\right)\left(100R+76\right)\) \(=10000QR+7600Q+5600R+4256\) có chữ số thứ hai từ phải qua là 5. 

 Vậy (*) đúng với \(k=l+1\), vậy (*) được chứng minh. Do \(N=16^{2017}=16^{5.403+2}\) nên có chữ số thứ 2 từ phải qua là 5.

 Ta lại thử tính một vài giá trị của \(16^{5k+2}\) thì thấy:

\(16^2=256;16^7=...456;16^{12}=...656;16^{17}=...856;...\)

 Ta lại dự đoán được \(16^{25u+17}\) có chữ số thứ 3 từ phải sang là 8 với mọi số tự nhiên \(u\).  (2)

 Chứng minh: (2) đúng với \(u=0\) 

 Giả sử (2) đúng đến \(u=v\ge0\). Khi đó \(16^{25u+17}=1000A+856\). Cần chứng minh (2) đúng với \(u=v+1\). Thật vậy:

 \(16^{25\left(u+1\right)+17}=16^{25u+17}.16^{25}\) \(=\left(1000A+856\right)\left(1000B+376\right)\) 

\(=1000C+321856\) có chữ số thứ 3 từ phải sang là 856.

 Vậy khẳng định đúng với \(u=v+1\) nên (2) được cm.

 Do đó \(N=16^{2017}=16^{25.80+17}\) có chữ số thứ 3 từ phải qua là 8.

 Vậy 3 chữ số tận cùng bên phải của số đã cho là \(856\)

 

 

30 tháng 12 2023

Ta tính một vài giá trị đầu của Un:

\(U_1=3;U_2=7;U_3=15;U_4=35;U_5=83\)

Đặt \(U_{n+1}=aU_n+bU_{n-1}+c\) (*)

Khi đó thay lần lượt \(n=2,n=3,n=4\) vào (*), ta có:

\(\left\{{}\begin{matrix}15=7a+3b+c\\35=15a+7b+c\\83=35a+15b+c\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\\c=-2\end{matrix}\right.\)

Do đó \(U_{n+1}=2U_n+U_{n-1}-2\)

30 tháng 12 2023

a) tanB = AC/AB = 1/2

b) ∆ABC vuông tại A

⇒ BC² = AB² + AC² (Pytago)

= (2AC)² + AC²

= 5AC²

⇒ AC² = BC²/5

= 25/5

= 5

⇒ AC = √5

3 tháng 1

vậy tính tanC sao ạ

 

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Tìm m để biểu thức thế nào hả bạn? Bạn xem lại đề.