K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2020

Ta có: 

\(N=x-\sqrt{x}+1\)

\(N=\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{3}{4}\)

\(N=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\left(\forall x\ge0\right)\)

Dấu "=" xảy ra khi: \(\left(\sqrt{x}-\frac{1}{2}\right)^2=0\Rightarrow x=\frac{1}{4}\)

Vậy Min(N) = 3/4 khi x = 1/4

26 tháng 10 2020

ĐKXĐ : x lớn hơn hoặc bằng 0

\(N=x-\sqrt{x}+1=x-2.\sqrt{x}.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu bằng xảy ra

\(\Leftrightarrow\hept{\begin{cases}x\ge0\\\sqrt{x}-\frac{1}{2}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x=\frac{1}{4}\end{cases}\Leftrightarrow}x=\frac{1}{4}}\)

Vậy ........

26 tháng 10 2020

\(\left(\frac{1}{x+2\sqrt{x}}-\frac{1}{\sqrt{x}+2}\right)\div\frac{1-\sqrt{x}}{x+4\sqrt{x}+4}\)

ĐKXĐ : \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)

\(=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}+2\right)}-\frac{1}{\sqrt{x}+2}\right)\div\frac{1-\sqrt{x}}{\left(\sqrt{x}+2\right)^2}\)

\(=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\right)\div\frac{1-\sqrt{x}}{\left(\sqrt{x}+2\right)^2}\)

\(=\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\times\frac{\left(\sqrt{x}+2\right)^2}{1-\sqrt{x}}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}}\)

=> đpcm

26 tháng 10 2020

a) \(\sqrt{5x}=\sqrt{35}\)

ĐK : x ≥ 0

Bình phương hai vế

pt ⇔ 5x = 35 ⇔ x = 7 ( tm )

b) \(\sqrt{36\left(x-5\right)}=18\)

ĐK : x ≥ 5

Bình phương hai vế

pt ⇔ 36( x - 5 ) = 324

    ⇔ x - 5 = 9

    ⇔ x = 14 ( tm )

c) \(\sqrt{16\left(1-4x+4x^2\right)}-20=0\)

⇔ \(\sqrt{4^2\left(1-2x\right)^2}=20\)

⇔ \(\sqrt{\left(4-8x\right)^2}=20\)

⇔ \(\left|4-8x\right|=20\)

⇔ \(\orbr{\begin{cases}4-8x=20\\4-8x=-20\end{cases}}\)

⇔ \(\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)

d) \(\sqrt{3-2x}\le\sqrt{5}\)

ĐK : x ≤ 3/2

Bình phương hai vế

bpt ⇔ 3 - 2x ≤ 5

⇔ -2x ≤ 2

⇔ x ≥ -1

Kết hợp với ĐK => Nghiệm của bpt là -1 ≤ x ≤ 3/2

26 tháng 10 2020

\(a,\sqrt{5x}=\sqrt{35}\left(x\ge0\right)\)

\(\Leftrightarrow5x=35\)

\(\Leftrightarrow x=7\left(tm\right)\)

vậy...

b, \(\sqrt{36\left(x-5\right)}=18\left(x\ge5\right)\)

\(\Leftrightarrow6\sqrt{x-5}=18\)

\(\Leftrightarrow\sqrt{x-5}=3\)

\(\Leftrightarrow x-5=9\)

\(\Leftrightarrow x=14\left(tm\right)\)

vậy...

c, \(\sqrt{16\left(1-4x+4x^2\right)}-20=0\)

\(\Leftrightarrow4\sqrt{\left(1-2x\right)^2}=20\)

\(\Leftrightarrow\sqrt{\left(1-2x\right)^2}=5\)

\(\Leftrightarrow\left|1-2x\right|=5\)

\(\Leftrightarrow\orbr{\begin{cases}1-2x=5\\1-2x=-5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)

vậy....

\(d,\sqrt{3-2x}< 5\left(x< 1.5\right)\)

\(\Leftrightarrow3-2x< 25\)

\(\Leftrightarrow-2x< 22\)

\(\Leftrightarrow x>-11\)

\(\Rightarrow-11< x< 1.5\)

vạy.

27 tháng 10 2020

\(2x^2+3y^2+4x=19\)

<=> \(2\left(x^2+2x+1\right)+3y^2=21\)

<=> \(2\left(x+1\right)^2+3y^2=21\)

<=> \(2\left(x+1\right)^2=21-3y^2\ge0\)

=> \(y^2\le7\)(1) 

Mặt khác \(2\left(x+1\right)^2=21-3y^2⋮2\)

=> 21 - 3y^2 là số chẵn  => 3y^2 là số lẻ => y^2 là số chính phương lẻ  (2) 

Từ (1) và (2) => y = 1 hoặc y = - 1=> y^2 = 1 

=> 2 (x + 1)^2 = 18 <=> (x + 1 ) = 9 <=> x + 1 = 3 hoặc x + 1 = - 3 <=> x = 2 hoặc x = -4

Vậy phương trình có 4 nghiệm ( 2; 1) (2; -1); (-4; 1 ); (-4; -1)

26 tháng 10 2020

\(p=2\Rightarrow2^p+3^p=13\text{ ko là scp };\)

p> 2 => p lẻ 2^p chia 3 dư 2 => scp chia 3 dư 2 (vô lí)

=> k ton tai

26 tháng 10 2020

a) \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{12}-\sqrt{\left(-3\right)^2}\)

\(=\left|\sqrt{3}-2\right|+\sqrt{2^2\cdot3}-\sqrt{3^2}\)

\(=2-\sqrt{3}+2\sqrt{3}-3\)

\(=\sqrt{3}-1\)

b) \(\left(\sqrt{8}-3\sqrt{6}+\sqrt{2}\right)\cdot\sqrt{2}+\sqrt{108}\)

\(=\sqrt{16}-3\sqrt{12}+\sqrt{4}+\sqrt{6^2\cdot3}\)

\(=4-3\sqrt{2^2\cdot3}+2+6\sqrt{3}\)

\(=6-3\cdot2\sqrt{3}+6\sqrt{3}\)

\(=6-6\sqrt{3}+6\sqrt{3}=6\)

26 tháng 10 2020

a) \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{12}-\sqrt{\left(-3\right)^2}\)

\(=\left|\sqrt{3}-2\right|+\sqrt{3.4}-\sqrt{3^2}=2-\sqrt{3}+\sqrt{4}.\sqrt{3}-3\)

\(=2-\sqrt{3}+2\sqrt{3}-3=\sqrt{3}-1\)

b) \(\left(\sqrt{8}-3\sqrt{6}+\sqrt{2}\right).\sqrt{2}+\sqrt{108}\)

\(=\sqrt{8}.\sqrt{2}-3\sqrt{6}.\sqrt{2}+\sqrt{2}.\sqrt{2}+\sqrt{108}\)

\(=\sqrt{8.2}-3\sqrt{6.2}+2+\sqrt{36.3}\)

\(=\sqrt{16}-3\sqrt{12}+2+\sqrt{36}.\sqrt{3}\)

\(=\sqrt{4^2}-3\sqrt{4.3}+2+6\sqrt{3}\)

\(=4-3\sqrt{4}.\sqrt{3}+2+6\sqrt{3}\)

\(=4-6\sqrt{3}+2+6\sqrt{3}=6\)

26 tháng 10 2020

a) \(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{1+\sqrt{2}}-2+\sqrt{3}\)

\(=\frac{\sqrt{3}.\left(\sqrt{3}+2\right)}{\sqrt{3}}+\frac{\sqrt{2}.\left(\sqrt{2}+1\right)}{1+\sqrt{2}}-2+\sqrt{3}\)

\(=\sqrt{3}+2+\sqrt{2}-2+\sqrt{3}\)

\(=2\sqrt{3}+\sqrt{2}\)

b) \(\frac{-3}{2}.\sqrt{9-4\sqrt{5}}+\sqrt{\left(-4\right)^2.\left(1+\sqrt{5}\right)^2}\)

\(=\frac{-3}{2}.\sqrt{5-4\sqrt{5}+4}+\sqrt{4^2.\left(1+\sqrt{5}\right)^2}\)

\(=\frac{-3}{2}.\sqrt{\left(\sqrt{5}-2\right)^2}+\sqrt{4^2}.\sqrt{\left(1+\sqrt{5}\right)^2}\)

\(=\frac{-3}{2}.\left|\sqrt{5}-2\right|+4.\left|1+\sqrt{5}\right|\)

\(=\frac{-3}{2}.\left(\sqrt{5}-2\right)+4\left(1+\sqrt{5}\right)\)

\(=\frac{-3\sqrt{5}}{2}+3+4+4\sqrt{5}\)

\(=\frac{-3\sqrt{5}}{2}+4\sqrt{5}+7\)

\(=\frac{-3\sqrt{5}}{2}+\frac{8\sqrt{5}}{2}+\frac{14}{2}\)

\(=\frac{-3\sqrt{5}+8\sqrt{5}+14}{2}=\frac{14+5\sqrt{5}}{2}\)

27 tháng 10 2020

A B C H K D

Ta có

\(BC=4.BH\Rightarrow BH=\frac{BC}{4}\) (1)

\(S_{BHD}=\frac{1}{2}.BD.BH.sin\widehat{KBC}\) (*)

Xét tg vuông ABC có

\(AB^2=BH.BC\) (Trong 1 tg vuông bình phương 1 cạnh gó vuông bằng tích của hình chiếu của nó trên cạnh huyền với cạnh huyền)

\(\Rightarrow AB^2=\frac{BC}{4}.BC=\frac{BC^2}{4}\Rightarrow AB=\frac{BC}{2}\) 

Xét tg vuông ABD có

\(\cos\widehat{ABD}=\frac{BD}{AB}\Rightarrow BD=AB.\cos\widehat{ABD}=\frac{BC.\cos\widehat{ABD}}{2}\) (2)

Thay (1) và (2) vào (*)

\(\Rightarrow S_{BHD}=\frac{1}{2}.\frac{BC.\cos\widehat{ABD}}{2}.\frac{BC}{4}.\sin\widehat{KBC}\) (**)

Xét tg BKC có

\(S_{BKC}=\frac{1}{2}.BK.BC.\sin\widehat{KBC\Rightarrow BC.\sin\widehat{KBC}=\frac{2.S_{BKC}}{BK}}\) (***)

Xét tg vuông ABK có

\(AB^2=BD.BK\Rightarrow BK=\frac{AB^2}{BD}=\frac{\frac{BC^2}{4}}{\frac{BC.\cos\widehat{ABD}}{2}}=\frac{BC}{2.\cos\widehat{ABD}}\) Thay giá trị của BK vào(***) ta có

\(BC.\sin\widehat{KBC}=\frac{2.S_{BKC}}{\frac{BC}{2.\cos\widehat{ABD}}}=\frac{4.S_{BKC}.\cos\widehat{ABD}}{BC}\) (3)

Thay (3) vào (**) ta có

\(\Rightarrow S_{BHD}=\frac{1}{2}.\frac{BC.\cos\widehat{ABD}}{2}.\frac{4.S_{BKC}.\cos\widehat{ABD}}{4.BC}=\frac{1}{4}.S_{BKC}.\cos^2\widehat{ABD}\) (dpcm)

7 tháng 11 2020

cho xin dấu = để làm cái :D lười tìm dấu = quá