thực hiện phép tính
1/ (\(\sqrt{x}\)+ 1) (\(\sqrt{x}\)- 2)
2/ (x+4) (x-2) - (x-3)^2
3/ 3x (2x^3 - 3x^2 + 5)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-3\right)^2+2\left(x-3\right)\left(x+2\right)+\left(x+2\right)^2\)
\(=\left(x-3+x+2\right)^2\)
\(=\left(2x-1\right)^2\)
Hằng đẳng thức: \(\left(a+b\right)^2=a^2+2ab+b^2\).
b) \(\left(x+5\right)^2-\left(2x+10\right)\left(x-6\right)+\left(x-6\right)^2\)
\(=\left(x+5\right)^2-2\left(x+5\right)\left(x-6\right)+\left(x-6\right)^2\)
\(=\left[\left(x+5\right)-\left(x-6\right)\right]^2\)
\(=11^2=121\)
Hằng đẳng thức: \(\left(a-b\right)^2=a^2-2ab+b^2\).
a.\(\left(x-3\right)^2+2\left(x-3\right)\left(x+2\right)+\left(x+2\right)^2\)
\(=\left[\left(x-3\right)+\left(x+2\right)\right]^2\)
\(=\left(x-3+x+2\right)^2\)
\(=\left(2x-1\right)^2\)
b.\(\left(x+5\right)^2-\left(2x+10\right)\left(x-6\right)+\left(x-6\right)^2\)
\(=\left(x+5\right)^2-2\left(x+5\right)\left(x-6\right)+\left(x-6\right)^2\)
\(=\left[\left(x+5\right)-\left(x-6\right)\right]^2\)
\(=\left(x+5-x+6\right)^2\)
\(C=\frac{x^2}{x-1}=\frac{x^2-1+1}{x-1}=x+1+\frac{1}{x-1}=2+x-1+\frac{1}{x-1}\)
\(\ge2+2\sqrt{\left(x-1\right).\frac{1}{x-1}}=2+2=4\)
Dấu \(=\)khi \(x-1=\frac{1}{x-1}\Leftrightarrow x=2\)(vì \(x>1\)).
Vậy \(minC=4\)xảy khi khi \(x=2\).
Ta có: \(C=\frac{x^2}{x-1}\)
\(=\frac{x^2-2x+1}{x-1}+\frac{2x-2}{x-1}+\frac{1}{x-1}\)
\(=\frac{\left(x-1\right)^2}{x-1}+\frac{2\left(x-1\right)}{x-1}+\frac{1}{x-1}\)
\(=x-1+2+\frac{1}{x-1}\)
\(=x-1+\frac{1}{x-1}+2\)
Nhận thấy \(x-1+\frac{1}{x-1}\ge2\sqrt{\left(x-1\right)\frac{1}{x-1}}=2\)
\(\Rightarrow A_{min}=4\)
Dấu "=" xảy ra khi :
\(x-1=\frac{1}{x-1}\)
\(\Leftrightarrow\left(x-1\right)^2=1\Leftrightarrow\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}}\)
Cre: mạng
\(1.\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)\)
\(=\sqrt{x}\left(\sqrt{x}-2\right)+1\left(\sqrt{x}-2\right)\)
\(=x-2\sqrt{x}+\sqrt{x}-2\)
\(=x-\sqrt{x}-2\)
\(2.\left(x+4\right)\left(x-2\right)-\left(x-3\right)^2\)
\(=x\left(x-2\right)+4\left(x-2\right)-\left(x^2-6x+9\right)\)
\(=x^2-2x+4x-8-x^2+6x-9\)
\(=8x-17\)
đk: x > = 0
\(\left(\sqrt{x}-1\right)^2+\sqrt{x}\left(4-\sqrt{x}\right)=11\)
<=> \(x-2\sqrt{x}+1-x+4\sqrt{x}=11\)
<=> \(2\sqrt{x}=11\)
<=> \(\sqrt{x}=\frac{11}{2}\)
<=> x = 121/4
b) 4x2 - 4 = 0
<=> 4(x - 1)(x + 1) = 0
<=> x = 1 hoặc x = -1
Trả lời:
a, \(\left(\sqrt{x}-1\right)^2+\sqrt{x}\left(4-\sqrt{x}\right)=11\)
\(\Leftrightarrow\left(\sqrt{x}\right)^2-2\sqrt{x}+1+4\sqrt{x}-\left(\sqrt{x}\right)^2=11\)
\(\Leftrightarrow2\sqrt{x}+1=11\)
\(\Leftrightarrow2\sqrt{x}=10\)
\(\Leftrightarrow\sqrt{x}=5\)
\(\Leftrightarrow\sqrt{x}=\sqrt{25}\)
\(\Rightarrow x=25\)
Vậy x = 25
b, \(4x^2-4=0\)
\(\Leftrightarrow\)\(4\left(x^2-1\right)=0\)
\(\Leftrightarrow4\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Vậy x = 1; x = -1
\(a)\)
\(4x^2-4x+1\)\(=\left(2x-1\right)^2\)
\(b)\)
\(\left(3x+2\right)\left(2-3x\right)\)\(=4-9x^2\)
\(c)\)
\(\left(x-3\right)\left(x^2+3x+9\right)\)\(=x^3-27\)
\(a,4x^2-4x+1=\left(2x\right)^2-2.2x.1+1=\left(2x-1\right)^2\)
\(b,\left(3x+2\right)\left(2-3x\right)=\left(2+3x\right)\left(2-3x\right)=2^2-\left(3x\right)^2\)
\(c,\left(x-3\right)\left(x^2+3x+9\right)=\left(x-3\right)\left(x^2+3x.1+3^2\right)=x^3-3^3\)
a) Ta có : n3 + 3n2 + 2n
= n(n2 + 3n + 2)
= n(n + 1)(n + 2) \(⋮\)6 (tích 3 số nguyên liên tiếp) (đpcm)
b) A = 20 + 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + .... + 295 + 296 + 297 + 298 + 299
= (1 + 2 + 22 + 23 + 24) + 25(1 + 2 + 22 + 23 + 24) + ... + 295(1 + 2 + 22 + 23 + 24)
= 31 + 25.31 + .. + 295.31
= 31(1 + 25 + ... + 295) \(⋮31\)(đpcm)
c) Ta có 49n + 77n - 29n - 1
= (49n - 1) + (77n - 29n)
= (49 - 1)(49n - 1 - 49n - 2 + .... - 1) + (77 - 29)(77n - 1 - 77n - 2.29 + 77n- 3.292 - .... - 1)
= 48(49n - 1 - 49n - 2 + .... - 1) + 48(77n - 1 - 77n - 2.29 + 77n- 3.292 - .... - 1)
= 48(49n - 1 - 49n - 2 + .... - 1 + 77n - 1 - 77n - 2.29 + 77n- 3.292 - .... - 1) \(⋮\)48 (đpcm)
Trả lời:
1) \(\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=\left(\sqrt{x}\right)^2-2\sqrt{x}+\sqrt{x}-2=x-\sqrt{x}-2\)
2) \(\left(x+4\right)\left(x-2\right)-\left(x-3\right)^2=x^2-2x+4x-8-\left(x^2-6x+9\right)\)\(=x^2+2x-8-x^2+6x-9=8x-17\)
3) \(3x\left(2x^3-3x^2+5\right)=6x^4-9x^3+15x\)