cho hàm số y= (2m +1)x +3m -2 có đồ thị là (d)
tìm m để (d) cắt (d") :x+2y=5 tại một điểm trên trục hoành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để căn thức xác định thì x2 + x + 1 ≥ 0
mà ta có x2 + x + 1 = ( x2 + x + 1/4 ) + 3/4 = ( x + 1/2 )2 + 3/4 ≥ 3/4 > 0 ∀ x
=> Căn thức xác định với mọi số thực x
Ta có: \(B=\Sigma\frac{1}{\sqrt{a^2-ab+b^2}}=\Sigma\frac{1}{\sqrt{\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}}\le\Sigma\frac{2}{a+b}=\frac{1}{2}\Sigma\frac{4}{a+b}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)
Đẳng thức xảy ra khi a = b = c = 1
\(\hept{\begin{cases}y+xy^2=-6x^2\\1+x^3y^3=19x^3\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{19}{6}xy+\frac{19}{6}x^2y^2=-19x^3\left(1\right)\\1+x^3y^3=19x^3\left(2\right)\end{cases}}\)
Lấy (1) + (2), ta được: \(\left(xy\right)^3+\frac{19}{6}\left(xy\right)^2+\frac{19}{6}\left(xy\right)+1=0\)
Đặt \(xy=t\)thì ta có phương trình \(t^3+\frac{19}{6}t^2+\frac{19}{6}t+1=0\Leftrightarrow\left(t+\frac{3}{2}\right)\left(t+1\right)\left(t+\frac{2}{3}\right)=0\)
TH1: \(t=-\frac{3}{2}\)hay \(xy=-\frac{3}{2}\Rightarrow x=\frac{-3}{2y}\)
Thay vào phương trình (1), ta được: \(y+\frac{-3}{2y}.y^2=-6.\left(\frac{-3}{2y}\right)^2\Leftrightarrow-\frac{1}{2}y=\frac{-27}{2y^2}\Leftrightarrow y=3\)suy ra x = \(\frac{-1}{2}\)
TH2: \(t=-1\)hay \(xy=-1\Rightarrow x=-\frac{1}{y}\)
Thay vào phương trình (1), ta được: \(y-\frac{1}{y}.y^2=-6.\left(\frac{-1}{y}\right)^2\Leftrightarrow\frac{1}{y^2}=0\)(vô nghiệm)
TH3: \(t=-\frac{2}{3}\)hay \(xy=-\frac{2}{3}\Rightarrow x=-\frac{2}{3y}\)
Thay vào phương trình (1), ta được: \(y+\frac{-2}{3y}.y^2=-6.\left(\frac{-2}{3y}\right)^2\Leftrightarrow\frac{1}{3}y=\frac{-8}{3y^2}\Leftrightarrow y=-2\)suy ra x = \(\frac{1}{3}\)
Vậy hệ có 2 nghiệm \(\left(x,y\right)\in\left\{\left(\frac{-1}{2};3\right);\left(\frac{1}{3};-2\right)\right\}\)
Đặt \(t=x\sqrt{2x^2+4}\Rightarrow t^2=2\left(x^4+2x^2\right)\Rightarrow x^2\left(x^2+2\right)=\frac{t^2}{2}\)
ta được phương trình \(\frac{t^2}{2}=4-t\Rightarrow t^2+2t-8=0\Rightarrow\orbr{\begin{cases}t=-4\\t=2\end{cases}}\)
Với \(t=-4\Rightarrow x\sqrt{2x^2+4}=-4\Rightarrow\hept{\begin{cases}x< 0\\2\left(x^4+2x^2\right)=16\end{cases}\Rightarrow\hept{\begin{cases}x< 0\\x^4+2x^2-8=0\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x< 0\\x^2=2\end{cases}\Rightarrow x=-\sqrt{2}}\)
Với \(t=2\Rightarrow x\sqrt{2x^2+4}=2\Rightarrow\hept{\begin{cases}x>0\\2\left(x^4+2x^2\right)=4\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x^4+2x^2-2=0\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x>0\\x^2=\sqrt{3}-1\end{cases}\Rightarrow x=\sqrt{\sqrt{3}-1}}\)
a) BC=√AC2−AB2=6AC2−AB2=6
theo hệ thức lượng trong tam giác : 1DH2=1DA2+1DC2=255761DH2=1DA2+1DC2=25576
=> DH=4,8
AH=AB2AC=3,6AH=AB2AC=3,6
ta thấy : ACAD=106=53ACAD=106=53; BCAH=63,6=53BCAH=63,6=53;ABHB=84,8=53ABHB=84,8=53
=> ACAD=BCAH=ABHB=53ACAD=BCAH=ABHB=53
=>∆ABC ~∆AHD định lí đảo ta let
b) ta có : ta có : AD.CH=6.(10-3,6)=38,4
DC.DH=8.4,8=38,4
=> AD.CH=DC.DH(=38,4)
ta có sinDCH=ADAC=610=35ADAC=610=35
cosDHC=DCAC=810=45DCAC=810=45
=> tan DCH=\(\frac{3}{4}\)
cotDCH=\(\frac{4}{3}\)
ta có d" cắt trục hoành tại điểm \(y=0\Rightarrow x=5\)
Gọi điểm A(5,0) vậy d cắt d" tại A
hay A thuộc d , thay tọa độ của A vào d ta có
\(\left(2m+1\right).5+3m-2=0\Leftrightarrow10m+5+3m-2=0\Leftrightarrow m=-\frac{3}{13}\)