Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6x3
đó
...................................................................
A = ( 3x )3 + 23 - 27x3 + 6 = 27x3 + 8 - 27x3 + 6 = 14 ( đpcm )
B = x3 + 3x2 + 3x + 1 - ( x3 - 1 ) - 3x2 - 3x = x3 + 1 - x3 + 1 = 2 ( đpcm )
C = 6( x + 2 )( x2 - 2x )( x2 - 2x + 4 ) - 6x3 - 2 ( bạn xem lại đề bài nhé ._. )
D = 2[ ( 3x )3 + 13 ] - 54x3 = 2( 27x3 + 1 ) - 54x3 = 54x3 + 2 - 54x3 = 2 ( đpcm )
ĐKXĐ : x + 1 \(\ge0\Leftrightarrow x\ge-1\)(1)
Khi đó ||x| - 1| = x + 1
<=> \(\orbr{\begin{cases}\left|x\right|-1=x+1\\\left|x\right|-1=-x-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left|x\right|=x+2\\\left|x\right|=-x\end{cases}}\)
Khi |x| = x + 2
<=> \(\orbr{\begin{cases}x=x+2\\x=-x-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}0x=2\left(\text{loại}\right)\\2x=-2\end{cases}}\Leftrightarrow x=-1\left(tm\right)\)
Khi |x| = -x
Nhận thấy -x \(\le0\)(2)
Từ (1) và (2) => x = 0
Vậy x \(\in\left\{-1;0\right\}\)là nghiệm phương trình
a,2x(3x-1)-6x(x+1)-(3-8x)
=6x^2-2x-6x^2-6x-3+8x
=-3
Vậy............
.....................................................
chúc cậu hok tốt!
\(2\left(\frac{1}{x}+\frac{1}{y}\right)+\frac{16}{xy}=3\) (ĐK: \(x,y\ne0\))
\(\Rightarrow2\left(x+y\right)+16=3xy\)
\(\Leftrightarrow9xy-6x-6y=48\)
\(\Leftrightarrow\left(3x-2\right)\left(3y-2\right)=52=2^2.13\)
\(x,y\)nguyên nên \(3x-2,3y-2\)là ước của \(52\)mà \(3x-2,3y-2\)đều chia cho \(3\)dư \(1\)nên ta có các trường hợp:
3x-2 | 1 | 52 | 4 | 13 | -2 | -16 |
3y-2 | 52 | 1 | 13 | 4 | -26 | -2 |
x | 1 | 18 | 2 | 5 | 0 (l) | -8 |
y | 18 | 1 | 5 | 2 | -8 | 0 (l) |
Vậy phương trình có các nghiệm là: \(\left(1,18\right),\left(18,1\right),\left(2,5\right),\left(5,2\right)\)
Kéo dài \(DA,CB\)cắt nhau tại \(E\).
Xét tam giác \(CDE\)có:
\(\widehat{EDC}=\widehat{ECD}\)(vì \(ABCD\)là hình thang cân)
suy ra \(\Delta CDE\)cân tại \(E\).
\(\Rightarrow ED=EC\)
\(AB//CD\Rightarrow\widehat{EAB}=\widehat{EDC},\widehat{EBA}=\widehat{ECD}\)(góc đồng vị)
suy ra \(\widehat{EAB}=\widehat{EBA}\)
\(\Rightarrow\Delta EAB\)cân tại \(E\)
\(\Rightarrow EA=EB\)
Suy ra \(ED-EA=EC-EB\Leftrightarrow AD=BC\).
Xét tam giác \(ADC\)và tam giác \(BCD\)có:
\(AD=BC\)
\(\widehat{ADC}=\widehat{BCD}\)
\(CD\)chung
suy ra \(\Delta ADC=\Delta BCD\left(c.g.c\right)\)
\(\Rightarrow AC=BD\)(hai cạnh tương ứng)
a) 5(2x -1) - 4(8 - 3x) = 7
<=> 10x - 5 - 32 + 12x = 7
<=> 22x = 44
<=> x =2
Vậy x = 2 là nghiệm phương trình
b) 7(2x - 5) - 5(7x - 2) + 2(5x - 7) = (x - 2) - (x + 4)
<=> 14x - 35 - 35x + 10 + 10x - 14 = x - 2 - x - 4
<=> -11x - 39 = - 6
<=> -11x = 33
<=> x = -3
Vậy x = -3 là nghiệm phương trình
\(a,10x-5-32+12x=7\)
\(22x=44\)
\(x=2\)
\(b,14x-35-35x+10+10x-14=x-2-x-4\)
\(-11x-39=-6\)
\(-11x=-33\)
\(x=3\)