Một số khi chia cho 27 dư 20. Hỏi phải cộng thêm vào số đó ít nhất bao nhiêu đơn vị nữa để được số chia hết cho 9?
Mik tik hết nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3n+29}{n+3}=\dfrac{3\left(n+3\right)+20}{n+3}=3+\dfrac{20}{n+3}\)
Để \(3n+29⋮n+3\Rightarrow20⋮n+3\)
Hay n+3 là ước của 20 do n là số tự nhiên \(\Rightarrow\left(n+3\right)\ge3\)
\(\Rightarrow\left(n+3\right)=\left\{4;5;10;20\right\}\Rightarrow n=\left\{1;2;7;17\right\}\)
\(3n+29⋮n+3\)
\(\Rightarrow3n+29-3\left(n+3\right)⋮n+3\)
\(\Rightarrow3n+29-3n-9⋮n+3\)
\(\Rightarrow20⋮n+3\)
\(\Rightarrow n+3\in\left\{-1;1;-2;2;-4;4;-5;5;-20;20\right\}\)
\(\Rightarrow n\in\left\{-4;-2;-5;-1;-7;1;-8;2;-23;17\right\}\left(n\in Z\right)\)
\(\overline{62xy437}⋮99\Rightarrow\overline{62xy437}\) đồng thời chia hết cho 9 và 11
\(\overline{62xy437}⋮9\Rightarrow6+2+x+y+4+3+7=22+\left(x+y\right)⋮9\)
\(\Rightarrow\left(x+y\right)=\left\{5;14\right\}\) (1)
\(\overline{62xy437}=⋮11\) khi Hiệu giữa tổng các chữ số ở vị trí chẵn (hoặc lẻ) với tổng các chữ số ở vị trí lẻ (hoặc chẵn chia hết cho 11
\(\Rightarrow\left(6+x+4+7\right)-\left(2+y+3\right)=\)
\(=\left(17+x\right)-\left(5+y\right)=12+\left(x-y\right)⋮11\)
\(\Rightarrow1+x-y⋮11\Rightarrow\left(x-y\right)=-1\Rightarrow x=y-1\) => x; y là 2 số tự nhiên liên tiếp => tổng của chúng phải là 1 số lẻ
=> x+y=5 kết hợp với x; y là 2 số tự nhiên liên tiếp => x=2; y=3 thỏa mãn điều kiện
\(62xy437\)
Ta có : \(62xy437⋮99\Rightarrow62xy437⋮9\&11\left(1\right)\left(99=11.9\right)\)
mà \(6+2+4+3+7=22\)
Nên (1) thỏa khi \(x+y\in\left\{5;14;23;..104\right\}\) và x;y là 2 số lẻ
\(\Rightarrow\left(x;y\right)\in\left\{\left(10;4\right);\left(4;10\right);\left(1;40\right);\left(40;1\right);\left(0;41\right);\left(41;0\right)\right\}\)
A B S M N H
Ta có
\(\widehat{AMB}=\widehat{ANB}=90^o\) (góc nội tiếp chắn nửa đường tròn)
\(\Rightarrow BM\perp SA;AN\perp SB\) => H là trực tâm của tg SAB
\(\Rightarrow SA\perp AB\) (trong tg 3 đường cao đồng quy tại 1 điểm)
a/
\(b=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)
\(2b=\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+...+\dfrac{99-97}{97.99}=\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}=\)
\(=1-\dfrac{1}{99}=\dfrac{98}{99}\Rightarrow b=\dfrac{98}{2.99}=\dfrac{49}{99}\)
b/
\(c=\dfrac{3-1}{1.2.3}+\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{100-98}{98.99.100}=\)
\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+\dfrac{1}{98.99}-\dfrac{1}{99.100}=\)
\(=\dfrac{1}{2}-\dfrac{1}{99.100}\)
c/
\(\dfrac{2}{5}.d=\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{100-98}{98.99.100}+\dfrac{101-99}{99.100.101}=\)
\(=\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}+\dfrac{1}{99.100}-\dfrac{1}{100.101}=\)
\(=\dfrac{1}{2.3}-\dfrac{1}{100.101}\Rightarrow d=\left(\dfrac{1}{2.3}-\dfrac{1}{100.101}\right):\dfrac{2}{5}\)
\(1990^{10}>1990^9\left(1\right)\)
Ta có \(1991^1=1990^1+1990^0\)
mà \(\)\(1990^1+1990^0< 1990^9\left(1990>1\right)\)
\(\Rightarrow1990^9>1991^1\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow1991^1< 1990^9< 1990^{10}\)
\(\left(11-x\right)\left(4x-24\right)=0\\ \Rightarrow\left[{}\begin{matrix}11-x=0\\4x-24=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=11\\4x=24\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=11\\x=6\end{matrix}\right.\)
Vậy \(x\in\left\{11;6\right\}\)
1 số chia 27 dư 20 => Số đó chia 9 dư 2 (Vì 20:9 dư 2)
Vậy để số đó chia hết cho 9 thì cần phải cộng thêm ít nhất 7 đơn vị nữa