Tìm tất cả các số nguyên tố p sao cho p2 + 11 có đúng 6 ƣớc số nguyên dƣơng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(Q=\left(\frac{x+1}{x-2}-\frac{2x}{x+2}-\frac{x^2-x}{4-x^2}\right):\left(3-\frac{3x+4}{x+2}\right)\)ĐK : \(x\ne\pm2\)
\(=\left(\frac{x^2+3x+2-2x\left(x-2\right)+x^2-x}{\left(x-2\right)\left(x+2\right)}\right):\left(\frac{3x+6-3x-4}{x+2}\right)\)
\(=\left(\frac{2x^2+2x+2-2x^2+4x}{\left(x-2\right)\left(x+2\right)}\right):\left(\frac{2}{x+2}\right)=\frac{2\left(3x+1\right)\left(x+2\right)}{2\left(x-2\right)\left(x+2\right)}=\frac{3x+1}{x-2}\)
b, \(Q< 3\Rightarrow\frac{3x+1}{x-2}-3< 0\Leftrightarrow\frac{3x+1-3x+6}{x-2}< 0\)
\(\Rightarrow x-2< 0\Leftrightarrow x>2\)
Ta có:
\(\frac{a}{c}=\frac{a^2+b^2}{c^2+b^2}\)
\(\Leftrightarrow ac^2+ab^2=ca^2+cb^2\)
\(\Leftrightarrow ac\left(c-a\right)=b^2\left(c-a\right)\)
\(\Leftrightarrow ac=b^2\)
Thế vô ta được
\(a^2+b^2+c^2=a^2+2ac+c^2+b^2-2ac\)
\(=\left(a+c\right)^2-b^2=\left(a+c-b\right)\left(a+c+b\right)\)
Làm nốt
\(A=\left(x-3\right)\left(x+4\right)\)
\(A=x^2-3x+4x-12\)
\(A=x^2-x-12\)
\(A=\left(x^2-x+\frac{1}{2}^2\right)-\frac{49}{4}\)
\(A=\left(x-\frac{1}{2}\right)^2-\frac{49}{4}\le-\frac{49}{4}\)dấu "=" xảy ra khi và chỉ khi \(x=\frac{1}{2}\)
\(< =>MIN:A=-\frac{49}{4}\)
Xét khoảng \(\left(n+1\right)!+2\)đến \(\left(n+1\right)!+n+1\).
Khoảng này có \(n\)số tự nhiên.
Với \(k\)bất kì \(k=\overline{2,n+1}\)thì
\(\left(n+1\right)!+k⋮k\)do đó không là số nguyên tố.
Do đó ta có đpcm.
Bài 209 : đăng tách ra cho mn cùng làm nhé
a,sửa đề : \(A=\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)
\(=\left(3x+1-3x-5\right)^2=\left(-4\right)^2=16\)
b, \(B=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{32}+1\right)\)
\(2B=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{32}+1\right)=\left(3^{32}-1\right)\left(3^{32}+1\right)\)
\(2B=3^{64}-1\Rightarrow B=\frac{3^{64}-1}{2}\)
c, \(C=\left(a+b-c\right)^2+\left(a-b+c\right)^2-2\left(b-c\right)^2\)
\(=2\left(a-b+c\right)^2-2\left(b-c\right)^2=2\left[\left(a-b+c\right)^2-\left(b-c\right)^2\right]\)
\(=2\left(a-b+c-b+c\right)\left(a-b+c+b-c\right)=2a\left(a-2b+2c\right)\)
a)ta có x^2+12x+39
=x^2+12x+36+3
=(x+6)^2+3
Để A đạt gtnn
=>x+6=0
=>x=-6
>A=3
=>GTNN của A=3 khi x=-6
a, \(A=x^2+12x+39=x^2+12x+36+3\)
\(=\left(x+6\right)^2+3\ge3\)
Dấu ''='' xảy ra khi x = -6
Vậy GTNN A là 3 khi x = -6
b, \(B=9x^2-12x=\left(3x\right)^2-4.3x+1-1=\left(3x-1\right)^2-1\ge-1\)
Dấu ''='' xảy ra khi x = 1/3
Vậy GTNN B là -1 khi x = 1/3
\(25y^2+10y+1\)
\(=\left(5y\right)^2+10y+1\)
\(=\left(5y+1\right)^2\)
Câu trả lời bằng ảnh :
~~Học tốt~~
22^r2