xác định a và b để x^4-3x^3-7x^2+ãx+b chia cho x^2-2+6 dư 3x+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(A=x\left(x+2\right)\left(x+4\right)\left(x+6\right)+8\)
\(=\left(x^2+6x\right)\left(x^2+6x+8\right)+8\)
\(=\left(x^2+6x+4\right)^2-4^2+8\)
\(=\left(x^2+6x+4\right)^2-8\ge-8\)
Dấu \(=\)khi \(x^2+6x+4=0\Leftrightarrow x=-3\pm\sqrt{5}\).
\(B=5+\left(1-x\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=5-\left[\left(x-1\right)\left(x+6\right)\right].\left[\left(x+2\right)\left(x+3\right)\right]\)
\(=5-\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=5-\left(x^2+5x\right)^2+6^2\)
\(=41-\left(x^2+5x\right)^2\le41\)
Dấu \(=\)khi \(x^2+5x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
\(C=\left(x+3\right)^4+\left(x-7\right)^4=\left[\left(x-2\right)+5\right]^4+\left[\left(x-2\right)-5\right]^4\)
\(=2\left(x-2\right)^4+300\left(x-2\right)^2+1250\ge1250\)
Dấu \(=\)khi \(x-2=0\Leftrightarrow x=2\).

\(8x^3-\frac{1}{27}\)
\(\left(2x\right)^3-\left(\frac{1}{3}\right)^3\)
\(\left(2x-\frac{1}{3}\right)\left(4x^2+\frac{2}{3}x+\frac{1}{9}\right)\)

a) \(A=x^2+3x+3\)
\(=\left(x^2+3x+\frac{9}{4}\right)+\frac{3}{4}\)
\(=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{3}{2}\right)^2=0\)
\(\Leftrightarrow x+\frac{3}{2}=0\)
\(\Leftrightarrow x=-\frac{3}{2}\)
b)\(B=x^2+4x+9\)
\(=\left(x^2+4x+4\right)+5\)
\(=\left(x+2\right)^2+5\ge5\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+2\right)^2=0\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
c)\(C=x+1-x^2\)
\(=-\left(x^2-x+\frac{1}{4}\right)+\frac{5}{4}\)
\(=-\left(x-\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x-\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{3}{2}\)
d)\(D=-4x^2+4x+1\)
\(=-\left(4x^2-4x+1\right)+2\)
\(=-\left(2x-1\right)^2+2\le2\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2x-1\right)^2=0\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow x=\frac{1}{2}\)


\(A=x^2-6x-7=x^2-6x+9-16=\left(x-3\right)^2-16\ge-16\)
Dấu \(=\)khi \(x-3=0\Leftrightarrow x=3\).
\(B=x^2+x-1=x^2+x+\frac{1}{4}-\frac{5}{4}=\left(x+\frac{1}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
Dấu \(=\)khi \(x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
\(C=2x^2-5x-9=2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)-\frac{97}{8}=2\left(x-\frac{5}{4}\right)^2-\frac{97}{8}\ge-\frac{97}{8}\)
\(D=3x^2-4x=3\left(x^2-\frac{4}{3}x+\frac{4}{9}\right)-\frac{4}{3}=3\left(x-\frac{2}{3}\right)^2-\frac{4}{3}\ge-\frac{4}{3}\)

\(A=x^2+4x+8=x^2+4x+4+4=\left(x+2\right)^2+4\ge4>0\forall x\)
Vậy biểu thức A luôn dương
\(=\left(x+2\right)^2+4\ge4\)Dấu ''='' xảy ra khi x = -2
Vậy GTNN A là 4 khi x =-2
\(B=4x^2+2x+1=\left(2x\right)^2+2.2x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(2x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
Vậy biểu thức B luôn dương
\(=\left(2x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)Dấu ''='' xảy ra khi x = -1/4
Vậy GTNN B là 3/4 khi x = 1/4
Thực hiện phép chia đa thức:
\(x^4-3x^3-7x^2+ax+b=\left(x^2-2x+6\right)\left(x^2-x-15\right)+\left(a-24\right)x+\left(b+90\right)\)
Khi đó: \(\hept{\begin{cases}a-24=3\\b+90=2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=27\\b=-88\end{cases}}\)