Tìm giá trị nhỏ nhất \(\sqrt{2x^2-2x+5}+\sqrt{2x^2-4x+3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử: \(x^{17}+y^{17}=19^{17}\) và \(1\le x\le y\le19\)
Ta có: \(19^{17}\ge\left(y+1\right)^{17}\)
\(\Rightarrow19^{17}>y^{17}+17y^{16}\)
Vậy x>17, chỉ có thể x=y=18
Thử lại, x=y=18 không thoả
Vậy pt đã cho không có nghiệm nguyên
Gọi ( \(x^',y^',z^'\)) là 1 nghiệm thoả mãn pt với \(z^'\)là số nhỏ nhất.
Không mất tính tổng quát, giả sử \(x^'\le y^'\le z^'\)
Mặt khác xét pt bậc 2 ẩn z :
\(z^2-\left(7x'y^'-2x^'-2y^'\right)z+\left(z^'+y^'\right)^2=0\)
Hiển nhiên pt này có 1 nghiệm z'
Theo định lý Viete thì nghiệm còn lại của nó là \(\frac{\left(x^'+y^'\right)^2}{z'}\inℤ\)
Như vậy \(\left(x',y',\frac{\left(x'+y'\right)^2}{z^'}\right)\)cũng là bộ số thoả mãn pt
Nếu giả sử x'+y' < z' \(\Rightarrow\frac{\left(x'+y'\right)^2}{z'}< z'\)vô lý vì ( x',y',z') cũng là 1 bộ số thoả mãn pt và vì tính nhỏ nhất của z'
Do đó ta phải có \(z'\le x'+y'\). Khai triển pt ban đầu và chia 2 vế của nó cho y'z'x' ta được:
\(7\le\frac{x'}{y'z'}+\frac{y'}{x'z'}+\frac{z'}{x'y'}+\frac{2}{x'}+\frac{2}{y'}+\frac{2}{z'}\)
\(\le\frac{1}{z'}+\frac{1}{x'}+\frac{x'+y'}{x'y'}+\frac{2}{x'}+\frac{2}{y'}+\frac{2}{z'}=\frac{4}{x'}+\frac{3}{y'}+\frac{2}{z'}\le\frac{10}{x'}\)
\(\Rightarrow x'=1\)
Khi đó \(y'\le z'\le y'+1\)\(\Rightarrow\orbr{\begin{cases}z'=y\\z'=y'+1\end{cases}}\)
+ Nếu z'=y' thì ta có pt \(\left(1+2z'\right)^2=7z'^2\Leftrightarrow3z'^2-4z'-1=0\)\(\Leftrightarrow z'=\frac{2\pm\sqrt{7}}{3}\)(loại)
+ Nếu x'=y'+1 thì ta có pt \(\left(2+2z'\right)^2=7z'\left(z'+1\right)\Leftrightarrow3z'^2-z'-4=0\Leftrightarrow z\in\left\{-1;\frac{4}{3}\right\}\)(loại)
Vậy pt đã cho không có nghiệm nguyên ( đpcm)
ta có
\(A=a^3-a-6a^2-6a+12=a\left(a-1\right)\left(a+1\right)-6\left(a^2-a-2\right)\)
do a là số nguyên nên \(â\left(a-1\right)\left(a+1\right)\)chia hết cho 6
mà hiển nhiên \(-6\left(a^2-a-2\right)\)chia hết cho 6
vậy A chia hết cho 6
A B C D M
do AB//CD nên ta có số đo cung AC=BD
mà \(\widehat{AMC}=\frac{1}{2}sd\widebat{AC}=\frac{1}{2}sd\widebat{BD}=\widehat{BMD}\)