K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMAC và ΔMEB có

MA=ME

\(\widehat{AMC}=\widehat{EMB}\)(hai góc đối đỉnh)

MC=MB

Do đó: ΔMAC=ΔMEB

=>\(\widehat{MAC}=\widehat{MEB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//EB

b: Xét ΔMAI và ΔMEK có

MA=ME

\(\widehat{MAI}=\widehat{MEK}\)(cmt)

AI=EK

Do đó: ΔMAI=ΔMEK

=>\(\widehat{AMI}=\widehat{EMK}\)

=>\(\widehat{EMK}+\widehat{EMI}=180^0\)

=>I,M,K thẳng hàng

8 tháng 11 2024

S A B C D E F I K M

a/

Trong mp(SAC) Gọi K là giao của EF và AC

\(K\in EF\)

\(K\in AC;AC\in\left(ABC\right)\Rightarrow K\in\left(ABC\right)\)

=> K là giao của EF với (ABC)

b/

Trong mp (SBC), Gọi M là giao của SI với BF

\(M\in SI;SI\in\left(SAI\right)\Rightarrow M\in\left(SAI\right)\)

\(M\in BF;BF\in\left(ABF\right)\Rightarrow M\in\left(ABF\right)\)

\(A\in\left(SAI\right);A\in\left(ABF\right)\)

=> AM là giao tuyến giữa (SAI) và (ABF)

c/

\(I\in\left(SAI\right)\)

\(I\in BC;BC\in\left(BCE\right)\Rightarrow I\in\left(BCE\right)\)

\(E\in SA;SA\in\left(SAI\right)\Rightarrow E\in\left(SAI\right)\)

\(E\in\left(BCE\right)\)

=> IE là giao tuyến giữa (SAI) và (BCE)

7 tháng 11 2024

a; (135  - 35).(-37) + 37.(- 42 - 58)

= 100.(-37) + 37.(-100)

= - 100.(37+  37)

= -100. 74

= - 7400

b; - 65.(87 - 17) - 87.(17 - 65)

  = - 65.87 + 65.17 - 87.17 + 87.65

= (-65.87 + 87.65) - (87.17 - 65.17)

= 0 + 17.(87- 65)

= 17.(-22)

= - 374

c; [3.(-2) - (-8)]. (-7 - (-2).(-5))

 = [-6 + 8].(-7 - 10)

= 2.(-17)

= - 34

d; 39.(-12) + (-39) + (117).29

= - 39.(12 + 1) + 3393

= -39.13 + 3393

= - 507 + 3393

=  2886

e; 63.(-71 - 55) - 71.(-55 - 63)

= -63.71 - 63.55 + 71.55 + 71.63

= (63.71 - 63.71) + (71.55 - 63.55)

= 0 + 55.(71 - 63)

=  55.8

= 440

 

 

Gọi AB là bóng của cây trên mặt đất, AC là chiều cao của cây

Theo đề, ta có: AB\(\perp\)AC tại A, AB=96m; \(\widehat{B}=50^0\)

Xét ΔABC vuông tại A có \(tanB=\dfrac{AC}{AB}\)

=>\(AC=AB\cdot tanB=96\cdot tan50\simeq114,4\left(m\right)\)

loading...

7 tháng 11 2024

Cho mik xin đề lớp 6 với ạ

 

7 tháng 11 2024

mik thì 11/11 mí thi mik nghĩ bn phải chăm chỉ ôn luyện thôi dạng chính là rơi vào ước chung,ước,ước chung lớn nhất và bội,bội chung ,bội chung nhỏ nhất đó là đối với những bài toán đố thôi à mik chỉ biết vậy à

                                   CHÚC BN THI TOT NGHE

7 tháng 11 2024

S = 5 + 52 + 53 + 54 +...+ 52019

S= (5 + 52 + 53) +(54 + 55 + 56)+...+(52017+52018+52019)

S=5(1 + 5+ 25 )+ 54 (1 + 5 + 25) +...+52017(1 + 5 + 25)

S = 5. 31 + 54 + 31 +...+ 52017 .31

S= 31 ( 5 + 54 +...+52017 )

⇒ S ⋮ 31       ( Do có thừa số 31)

7 tháng 11 2024

S = 5 + 52 + 5+ 5+..+ 52019

S = 51 + 52 + 53 + 54 + ... + 52019

Xét dãy số: 1; 2; 3; 4;...;2019; dãy số này là dãy số cách đều khoảng cách là: 2 - 1 = 1

Số số hạng là: (2019 - 1) : 2019 (số hạng)

Vì 2019 : 3 = 673 nên nhóm ba số hạng liên tiếp của A thành một nhóm ta được:    

A = (5 + 52 + 53) + (54 + 55 + 56) + ... + (52017+ 52018 + 52019)

A = 5(1 + 5 + 52) + 54.(1 + 5 + 52) + ... + 52017.(1 + 5+  52)

A = (1 + 5 + 52).(5 + 54 + .. + 52017)

A = (1 + 5 + 25).(5 + 54 + ... + 52017)

A = 31.(5 + 54  + ...+ 52017) ⋮ 31 (đpcm)

 

 

 

a: Xét ΔOAB có OA=OB=AB

nên ΔOAB đều

=>\(\widehat{OBA}=\widehat{OAB}=\widehat{AOB}=60^0\)

Xét ΔBCO có BC=BO

nên ΔBCO cân tại B

Xét ΔBCO có \(\widehat{ABO}\) là góc ngoài tại B

nên \(\widehat{ABO}=\widehat{BOC}+\widehat{BCO}\)

=>\(2\cdot\widehat{ACD}=60^0\)

=>\(\widehat{ACD}=\dfrac{60^0}{2}=30^0\)

b: Xét ΔOAC có 

OB là đường trung tuyến

\(OB=\dfrac{AC}{2}\)

Do đó: ΔOAC vuông tại O

BA=BC

mà BA=3cm

nên BC=3cm

AC=3+3=6(cm)

ΔOAC vuông tại O

=>\(OA^2+OC^2=AC^2\)

=>\(OC=\sqrt{6^2-3^2}=3\sqrt{3}\left(cm\right)\)

OD+DC=OC

=>\(DC=OC-OD=3\sqrt{3}-3\left(cm\right)\)

7 tháng 11 2024

\(n-2000=a^2\left(a\in N\right)\Rightarrow n=a^2+2000\left(1\right)\)

\(n-2011=b^2\left(b\in N\right)\Rightarrow n=b^2+2011\left(2\right)\)

\(\left(1\right);\left(2\right)\Rightarrow a^2+2000=b^2+2011\)

\(\Rightarrow a^2-b^2=11\)

\(\Rightarrow\left(a-b\right)\left(a+b\right)=11\)

\(\Rightarrow\left(a-b\right);\left(a+b\right)\in U\left(11\right)=\left\{1;11\right\}\)

\(\Rightarrow\left(a;b\right)=\left\{6;5\right\}\)

\(\left(1\right)\Rightarrow n=36+2000=2036\)

Kiểm tra \(\left(2\right)\Rightarrow n=25+2011=2036\left(đúng\right)\)

Vậy \(n=2036\)

7 tháng 11 2024

    Đây là toán nâng cao chuyên đề giải phương trình nghiệm nguyên, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:

                             Giải:

Vì n - 2000 là số chính phương nên n - 2000 = k2 (k \(\in\) N)

Vì n - 2011 là số chính phương nên n - 2011 = d2(d\(\in\) N); d < k

Hiệu của hai số trên là: n - 2000 - (n - 2011) = k2 - d2

            n - 2000 - n + 2011 = k2 - d2

           (n - n) + (2011 - 2000) = k2 - d2

                0 + 11 = k2  - kd + kd - d2

                       11 = (k2 - kd) + (kd - d2)

                        11 = k(k - d) + d(k -  d)

                       11 = (k - d).(k + d); Ư(11) = {1; 11} 

  Vì k; d \(\in\)  N ta có:   k - d < k + d ⇒ k - d = 1; k + d = 11

       k - d = 1 ⇒ k = 1 + d ⇒ 1  + d  + d = 11  ⇒ d + d = 11 - 1

⇒ 2d = 10 ⇒ d = 10 : 2  = 5 ⇒ n - 2011 = d2 = 52 = 25

⇒ n = 2011 + 25 = 2036

Vậy n = 2036 

 

 

       

 

 

7 tháng 11 2024

C = 1 + 2 + 22 + ...  + 22008 

C = 20 + 21 + 22 + ... + 22008

Xét dãy số: 0; 1; 2;...; 2008

Dãy số trên là dãy số cách đều với khoảng cách là: 1 - 0 = 1

Dãy số trên có số số hạng là: (2008 - 0) : 1 + 1 = 2009

Vì 2009 : 3 = 669 dư 2 nên nhóm ba số hạng liên tiếp của C vào nhau ta được:

C = 1+2 + (22 + 23 + 24) + (25 + 26 + 27) + .. +(22006+ 22007 + 22008)

C = 3 + 22.(1 + 2+ 22) + 25.(1 + 2 + 22) + .. + 22006.(1 + 2 + 22)

C = 3 + (1 + 2+ 22).(22 + 25 + ... + 22006)

C = 3 + 7.(22 + 25 + ... + 22006)

7.(22 + 25 + ... + 22006) ⋮ 7; 3 : 7 dư 3 vậy 

C = 1 + 2 + 22 + ...+ 22008 chia 7 dư 3. (đpcm)

 

7 tháng 11 2024

em cảm ơn cô ạ