Cho (O;R ) đường kính BC ,lấy điểm A trên (O) sao cho AB =R.Tiếp tuyến tại B của đường tròn cắt tia CA tại D. a/ Tính góc BAC . b/ Chứng minh BD2 = AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì: FBM=FAM=45 độ nên BFMA là tứ giác nội tiếp
tương tự có đpcm
b, ta có:
MFN=DAB=90
NEM=BCD=90
=> nội tiếp
c, theo câu b ta có:
MNB=BEC=BNC nên: NB là phân giác góc INC
thấy ngay H là trực tâm tam giác BMN nên: BI vuông góc MN
do đó áp dụng tính chất đường phân giác ta được BI=BC=a.
Chứng minh góc EBN = góc ECN = 450
=> Tứ giác BENC nội tiếp (đpcm)
a) Dựa vào dấu hiệu nhận biết ở bài 2, chứng minh được EH.EB = EI.EC (hệ thức lượng trong tam giác vuông).
b) Gọi F là giao điểm của Ek và BC.
xét tam giác ABC cân tại A
có AM là trung tuyến
=> AM là đg cao
ta có góc AMB =90 độ
ADB=90 độ(BD vg góc AC)
=>Tứ giác ABMD nội tiếp
xét tam giác BDM có N,I lần lượt là trg điểm MB,BD
=> NI là đtb tam giác BMD
=>IN//DM=> góc INM= DMC
=> góc DMC =BAK
ta có gócINM=BAK cùng= DMC
=> tứ giác ABNK nội tiếp
b) xét tam giác CNK, CAB có NCK chung
góc CNK= BAC(cmt)
=> 2 tam giác CNK, CAB đồng dạng(g.g)
=> CK/cb= CN/AC
=> AC.CK=BC.CN
mà CN=MN+MC= BC/4+BC/2=3BC/4
nên AC.CK=3.BC^2/4=> BC^2= 4/3AC.CK
a) xét tam giác ABC cân tại A
AM là đường trung tuyến => AM là đường cao
ta có : AMB = 90 độ
ADB = 90 độ ( BD vuông góc với AC)
=> tứ giác ABMD nội tiếp đường tròn
xét tam giác BDM có lần lượt N, I là trung điểm của MB và BD
=> NI là đường trung bình của tam giác BDM
=> IN//DM
=> +INM = DMC
+ DMC = BAK
=> INM = BAK
=> tứ giác nội tiếp.
b) xét tam giác CNK, CAB có NCK chung
góc CNK = BAC
=> tam giác CNK đồng dạng với tam giác CAB
=> CK/CB=CN/AC
=> AC.CK=BC.CN
mà CN = MN+MC= BC/4 + BC/2=3BC/4
nên AC.CK=3BC^2/4=> BC2=34CA.CK
1. Gọi giao điểm của CH với AB là I, AH với BC là K,Ta có tứ giác BIHK nội tiếp mà (1) Ta lại có (hai góc nội tiếp cùng chắn một cung)
(t/c đối xứng) (2)Từ (1) và (2) Suy ra tứ giác AHCP nội tiếp.2. Tứ giác AHCP nội tiếp Ta lại có mà
(3)Chứng minh tương tự câu 1) ta có tứ giác AHBN nội tiếp
(4)
Từ (3) và (4) N, H, P thẳng hàng
3.
=> (<180độ) không đổi
Có AN = AM = AP, cần chứng minh NP = 2.AP.sinBAC
=> NP lớn nhất <=> AP lớn nhất mà AP = AM
AM lớn nhất <=> AM là đường kính của đường tròn (O)
Vậy NP lớn nhất <=> AM là đường kính của đường tròn.
a)gọi I là giao điểm của CH và AB
K là giao điểm AH và BC
ta có :góc IBK+ AHC=180 độ
mà góc IBK= APC
=> tứ giác AHCP nội tiếp
b)Ta có Góc AHP= ACP cùng chắn cung AP (
mà góc ACP=ACM (1)
=> góc ACP= AHP
cmtt
gócAHN=ABN cùng chắn cung AP
mà ABN=ABM => AHN=ABM(2)
Xét tứ giác ABMC nội tiếp
gócACM+ABM=180 độ (3)
từ (1)(2)(3) =>
góc AHP+AHN=180 độ
=> N,H,P thẳng hàng
ta có góc MAN=2BAM,
góc MAP=2MAC
=> NAP=2(BAM+MAC)
=2 x góc BAC (ko đổi )
ta có AM=AN=AP
NP=2AP.sin BAC=2AM.sinBAC
=> NP lớn nhất <=> AM Max
y'
a) b) Đưa các đẳng thức về dạng đẳng thức của các tỉ số và áp dụng để chứng minh các cặp tam giác đồng dạng.
c) Từ hai phần a và b, ta suy ra
a) b) Đưa các đẳng thức về dạng đẳng thức của các tỉ số và áp dụng để chứng minh các cặp tam giác đồng dạng.
c) Từ hai phần a và b, ta suy ra .